

BC BASIC Reference manual and tutorial

including

The Best Calculator Reference Manual

© 2016, 2017 Peter D Smith

The Best Calculator app is available for Windows and Windows Phone

from the Microsoft App Store at

https://www.microsoft.com/en-us/store/apps/best-

calculator/9wzdncrdfd6x

Visit the Best Calculator web site at

https://bestcalculator.wordpress.com/

https://www.microsoft.com/en-us/store/apps/best-calculator/9wzdncrdfd6x
https://www.microsoft.com/en-us/store/apps/best-calculator/9wzdncrdfd6x
https://bestcalculator.wordpress.com/

Guide to Using Best Calculator Page | 3

TABLE OF CONTENTS

1 A Quick Tour of Best Calculator ... 19

2 Numbers and Common Calculations ... 21

2.1 Simple Arithmetic ... 21

2.2 Chain calculations ... 21

2.3 Algebraic Entry and Parentheses .. 21

2.4 Editing errors and clearing the display ... 22

3 Memory Keys ... 23

3.1 Memory operation ... 23

3.2 Example .. 23

3.3 Memory Add and Subtract ... 24

4 More Math ... 25

4.1 Square (x²) key .. 25

4.2 Square Root (√) key .. 25

4.3 Inverse (1/x) key ... 25

4.4 Change Sign (±) key .. 25

5 Scientific Notation .. 26

5.1 Using the EE key ... 26

6 Percent Key % .. 27

6.1 Percent (%) key ... 27

6.2 Calculating sales tax ... 27

6.3 Calculating sales with a percent discount .. 27

7 Trigonometry keys on the Advanced calculator .. 28

7.1 Calculate in degrees or radians .. 28

7.2 Sin, Cos, Tan ... 28

7.3 Inverse Sin, Cos, Tan ... 29

8 Logarithms on the Advanced calculator .. 30

9 Powers, roots, x!, mod on the Advanced calculator 31

9.1 Factorial (x!) key ... 31

Guide to Using Best Calculator Page | 4

9.2 Mod Key ... 31

9.3 Cube (x3) and Cube Root (∛x) keys .. 31

9.4 Arbitrary Power (xy) and Root (y√x) keys.. 32

10 Rounding and abs on the Advanced calculator 33

11 Random Numbers on the Advanced calculator 34

12 Formatting .. 35

12.1 Standard formatting ... 35

12.2 Exponent formatting .. 36

12.3 Fixed formatting ... 36

12.4 Natural formatting.. 36

12.5 Percent formatting ... 37

13 Constants ... 38

13.1 π and e .. 38

13.2 gn c and Na ... 38

13.3 NaN, ∞ and -∞ .. 38

14 Memory Page ... 39

14.1 Show the operation of Memory0 ... 39

14.2 Saving and Roaming ... 39

14.3 Name a memory cell .. 39

14.4 Get from display and Copy to display ... 40

14.5 Clear ... 40

14.6 Memory and BC Basic ... 40

15 Dates Page .. 41

15.1 Compare Dates ... 41

15.2 Convert to Gregorian .. 41

15.3 Add days ... 42

16 Hex, Decimal, Octal, Binary on the Programmer’s calculator 43

16.1 Setting the mode .. 43

16.2 Converting between bases ... 43

17 Bit Operators on the Programmer’s calculator .. 44

Guide to Using Best Calculator Page | 5

17.1 B# (count bits) .. 44

17.2 Inverse (~) and 2’s complement ... 44

17.3 And (&), Or (|) , Xor (^) ... 44

18 Bytes and Swabbing on the Programmer’s calculator 45

18.1 Bytes ... 45

18.2 SWAB (Swap Bytes) key ... 45

19 Shift operators on the Programmer’s calculator 46

20 Programmer’s Math ... 47

21 Statistical calculator ... 48

21.1 Parts of the Statistical calculator screen .. 48

21.2 Entering Data .. 49

21.3 Classical Statistics (Results) .. 50

Robust Statistics (Results) ... 51

Regression (Results) .. 52

21.4 Compare with T-Tests (Results) ... 53

21.5 Boxplots (Graph) ... 54

21.6 XY Scatter-plots (Graph) ... 55

22 Conversions .. 56

22.1 Converting .. 56

22.2 Copy to and from the Calculator results display .. 56

22.3 Area conversions .. 57

22.4 Energy Conversions .. 57

22.5 Length Conversions .. 57

22.6 Temperature Conversions .. 58

22.7 Weight .. 58

22.8 Farm Volumes (US) ... 59

23 Ascii Table .. 60

24 Unicode .. 61

24.1 Search Rules ... 61

24.2 Copying characters ... 61

Guide to Using Best Calculator Page | 6

25 Advanced Windows Features... 62

25.1 Shortcut on the desktop ... 62

25.2 Set as the Calculator Key .. 63

26 A brief historical note ... 64

27 Equation Input: your first program .. 65

27.1 What is a program? .. 65

27.2 How do I run my program? .. 65

27.3 How can I print some text? .. 65

27.4 How can my program use the calculator value? .. 66

27.5 How can I write an equation? .. 66

27.6 How can I write to the calculator? ... 66

27.7 Why do some examples start with an = sign? .. 67

27.8 How can I make several different programs?... 67

27.9 What are all the keys on the screen? ... 67

27.10 How can I learn more? ... 68

28 Sigma Function: advanced programming .. 69

29 What all can you do in the BC BASIC environment? 71

29.1 All the main edit dialogs ... 71

29.2 Library of Packages ... 72

29.3 Library Properties (Import BC BASIC package) ... 74

29.4 Bind a program to a key ... 75

29.5 About this package ... 76

29.6 List of programs .. 78

29.7 About this program .. 80

29.8 Edit Program ... 82

29.9 Output screen ... 84

30 BASIC Language Reference .. 86

30.1 Program structure .. 86

30.2 Flags .. 87

30.3 Numbers and Strings and Variables ... 87

30.3.1 Numbers ... 87

Guide to Using Best Calculator Page | 7

30.3.2 Strings ... 88

30.3.3 Variables, GLOBAL, and DIM .. 88

30.4 <expression> overview ... 90

30.4.1 Quick introduction to expressions ... 90

30.4.2 Expression Rules ... 90

30.4.3 negate, power, root prefix and postfix operators 92

30.4.4 Operators + - * / and more .. 92

30.4.5 The INPUT expression .. 96

30.5 Math Functions... 96

30.5.1 Trigonometry functions SIN COS TAN ASN ACS ATN 97

30.5.2 Logarithm and Power functions LN EXP SQR 97

30.5.3 Rounding and sign functions SGN ABS INT 97

30.6 String functions (LEFT, MID, RIGHT, LEN, CHR$, CODE, VAL) 98

30.6.1 LEFT (string, count)., MID (string, index, count) and RIGHT (string,

count) 98

30.6.2 LEN string ... 99

30.6.3 CHR, CODE .. 99

30.6.4 VAL(string) .. 100

30.7 <statement> overview.. 101

30.8 Packages and Programs .. 102

30.8.1 Inside a package file ... 103

30.9 Picking a package for your program ... 103

30.9.1 Creating common functions for several programs 103

30.9.2 Exporting packages .. 103

30.10 All of the Special Symbols .. 104

31 BASIC Statements Reference ... 105

31.1 [CALL] <function> (<expression>, …) .. 105

31.2 CLS [<color>, <color>] and PAPER <color> ... 106

Guide to Using Best Calculator Page | 8

31.3 CONSOLE <expression> [, <expression>] .. 107

31.4 DIM <name> ([size]) and array methods .. 108

31.5 DIM’d array methods and properties ... 110

31.5.1 Count property ... 110

31.5.2 Max and Min properties .. 110

31.5.3 MaxOf(column) and MinOf(column) properties 110

31.5.4 Add() method and MaxCount and RemoveAlgorithm properties

 110

31.5.5 AddRow() method .. 111

31.6 DUMP ... 111

31.7 FOR <variable> = <start> TO <end> [STEP <step>] … NEXT <variable> 112

31.8 FUNCTION <name> (<args>) … RETURN [<value>] 115

31.9 GLOBAL <variable> ... 115

31.10 GOSUB <linenumber> and RETURN ... 116

31.11 GOTO <linenumber> .. 116

31.12 IF (<expression>) THEN <statement> [ELSE <statement>]....................... 117

31.13 IF (<expression>) … [ELSE …] ENDIF .. 117

31.14 IMPORT FUNCTIONS FROM “program” ... 118

31.15 INPUT <variable> .. 119

31.16 (LET) <variable> = <expression> ... 119

31.17 PAUSE <frames> ... 120

31.18 PRINT [AT row,col] <expression> [(, or ;) [AT row,col] <expression]* 121

31.19 RAND <seed> & the RND value .. 122

31.20 REM comment words to the end of the line .. 123

31.21 STOP and END .. 123

32 Extensions Reference ... 125

32.1 Calculator.Value and Calculator.Message Extension 125

32.2 DateTime Extension.. 126

32.2.1 DateTime.GetNow() ... 126

32.2.2 DateTime.Subtract (datetime) ... 126

Guide to Using Best Calculator Page | 9

32.2.3 Hour, Minute, Second, Year, Month, Day and DayOfWeek

properties ... 126

32.2.4 DateTime.Date, DateTime.Time and DateTime.TimeHHmm 126

32.2.5 DateTime.Iso8601 and DateTime.Rfc1123 127

32.2.6 DateTime.AsTotalSeconds ... 127

32.2.7 Example of all the properties ... 127

32.3 File Extension .. 128

32.3.1 file=File.AppendPicker(), file.AppendLine, file.AppendText() and

file.Size 128

32.3.2 file=File.ReadPicker(“.txt”) , file.ReadAll(), file.ReadLines()....... 129

32.3.3 file=File.WritePicker(), file.WriteLine, file.WriteText() and file.Size

 130

32.4 Http Extension .. 131

32.4.1 Http.Get(url, [headers]) ... 131

32.4.2 Http.Post() and Http.Put() .. 132

32.5 Math Extension .. 133

32.5.1 Trigonometry (Math.Sin (radians) and more) 133

32.5.2 Rounding and sign (Floor(), Round() and more) 134

32.5.3 Logarithm and power functions (Math.Log, Math.Exp, and more)

 137

32.5.4 Math.Factorial and Math.IsNaN ... 138

32.5.5 Math.PI, Math.E and Math.NaN values 138

32.6 Memory Extension ... 139

32.6.1 Memory[<expression>] and Memory.<name> 139

32.6.2 GetOrDefault and IsSet functions .. 140

32.6.3 Memory technical details ... 141

32.7 Screen Extension .. 143

32.7.1 Screen.ClearLine(<line>) and Screen.ClearLines(<from>, <to>) 143

Guide to Using Best Calculator Page | 10

32.7.2 Screen.RequestActive() and Screen.RequestRelease() 143

32.7.3 Screen.H and Screen.W Extension ... 144

32.8 Screen.Graphics() Extension ... 145

32.8.1 Circle(X, Y, radius) Line(X1, Y1, X2, Y2) Rect(X1, Y1, X2, Y2) 145

32.8.2 SetPosition(X,Y) and SetSize(H, W) .. 146

32.8.3 GraphXY(data) .. 147

32.8.4 GraphY(data) .. 147

32.8.5 Updating Data with graph.Update() and PAUSE 148

32.9 String Extension .. 150

32.9.1 String.Escape (“csv”, <string or array>) 150

32.9.2 String.Escape (“json”, <string or array>) 152

32.9.3 String.Parse(“csv”, <data string>) .. 152

32.9.4 String.Parse (“json”, <data string>) .. 153

33 Bluetooth Programming with Best Calculator, IOT edition 155

33.1 Programming Bluetooth using BC BASIC .. 155

33.2 Initializing your device and available properties .. 156

33.2.1 Error handling and Bluetooth .. 158

33.3 The objects you use when programming your Bluetooth device 159

33.3.1 The Bluetooth object ... 159

33.3.2 The Bluetooth.Devices object (Array / ObjectValueList) 160

33.3.3 Individual Bluetooth devices from Bluetooth.Devices 160

33.3.4 Specializations .. 161

33.4 Selecting a device with PickDevicesNames and more 161

33.4.1 Bluetooth.PickDevicesName(<name pattern>) 161

33.4.2 Bluetooth.DevicesName(<name pattern>) 163

33.4.3 Bluetooth.Devices() .. 163

33.5 Reading data from raw Bluetooth services and characteristics 163

33.5.1 Direct device Read routines ... 164

Guide to Using Best Calculator Page | 11

33.6 Using callbacks to read data ... 166

33.7 Using the specializations for specific devices ... 169

34 Bluetooth Specializations for specific devices 170

34.1 BBC micro:bit .. 171

34.2 beLight CC2540T Light development kit ... 174

34.3 DOTTI device... 175

34.4 Hexiwear wearable platform .. 178

34.5 MagicLight and Flux light .. 180

34.6 MetaWear MetaMotion R device ... 181

34.7 NOTTI device .. 186

34.8 TI SensorTag 2541 (original version) .. 189

34.9 TI SensorTag 1350 (2016 version) .. 192

35 Complete Examples .. 197

35.1 Connecting to Microsoft Flow .. 197

35.1.1 Set up the flow at Microsoft Flow .. 197

35.1.2 Write the BC BASIC program .. 199

35.2 Hiking with an altimeter ... 202

35.2.1 The Graph program .. 202

35.2.2 The Altitude program ... 206

35.2.3 The TARE program ... 207

36 Graphics and BC BASIC ... 209

36.1 Fixed character screen commands ... 210

36.2 Console Commands .. 212

37 Using the library, step by step ... 212

37.1 Add a new package for your program .. 214

37.2 Add a new program to your package ... 215

37.3 Edit the program to do the conversion .. 215

37.4 Run the program to test it .. 217

37.5 Bind the program to a key .. 218

37.6 Next steps ... 219

Guide to Using Best Calculator Page | 12

38 Appendix: Release Notes ... 220

39 Appendix: Sample programs .. 221

39.1 BT: An Overview of Bluetooth .. 221

39.1.1 List Bluetooth devices .. 221

39.1.2 Pick a Bluetooth device .. 222

39.1.3 Power ... 222

39.2 BT: BBC Microbit ... 223

39.2.1 Accelerometer .. 223

39.2.2 Button .. 224

39.2.3 Compass ... 225

39.2.4 Magnetometer ... 226

39.2.5 SetLed ... 227

39.2.6 Status.. 228

39.2.7 Temperature .. 228

39.2.8 Write (text, speed) ... 230

39.3 BT: beLight .. 230

39.3.1 Green .. 230

39.3.2 Red ... 231

39.4 BT: Dotti .. 232

39.4.1 An introduction .. 232

39.4.2 Change Mode ... 232

39.4.3 List BT Devices .. 233

39.4.4 Load screen from memory ... 234

39.4.5 Raw Bluetooth commands ... 235

39.4.6 SetAnimationSpeed .. 236

39.4.7 SetColumn and SetRow to random lines 237

39.4.8 SetName of a Dotti device ... 238

Guide to Using Best Calculator Page | 13

39.4.9 SetPixel to random green dots ... 238

39.4.10 SetPixel to write a single green dot 239

39.4.11 Sync Time ... 239

39.5 BT: Hexiwear... 240

39.5.1 Accelerometer .. 240

39.5.2 Compass ... 241

39.5.3 List Information .. 242

39.5.4 Raw Access to Hexiwear .. 243

39.5.5 Read All .. 244

39.5.6 Set notification count ... 246

39.5.7 SetTime .. 247

39.6 BT: MagicLight .. 247

39.6.1 Green .. 247

39.6.2 Off .. 248

39.6.3 On ... 248

39.6.4 Red ... 249

39.7 BT: MetaWear MetaMotion ... 249

39.7.1 _Basics .. 250

39.7.2 Accelerometer .. 250

39.7.3 Altimeter .. 252

39.7.4 Ambient Light Sensor ... 253

39.7.5 Barometer .. 254

39.7.6 Black ... 256

39.7.7 Blue Pulse ... 256

39.7.8 Buttons ... 257

39.7.9 Green .. 258

39.7.10 Gyroscope .. 259

Guide to Using Best Calculator Page | 14

39.7.11 LED Off.. 260

39.7.12 LED On .. 260

39.7.13 Magnetometer ... 261

39.7.14 Save Data To File .. 262

39.7.15 Temperature .. 265

39.8 BT: Notti ... 266

39.8.1 An introduction .. 266

39.8.2 Change Mode ... 267

39.8.3 NOTTI timer .. 267

39.8.4 Raw Bluetooth commands ... 269

39.8.5 Set Alarm .. 269

39.8.6 SetColor to change the NOTTI color to blue 270

39.8.7 SetColor to change the NOTTI color to green 271

39.8.8 SetColorCustom animates the color from red to blue and back

again 271

39.8.9 SetName of a NOTTI device ... 272

39.8.10 Sync Time ... 272

39.9 BT: SensorTag 1350 .. 273

39.9.1 Accelerometer Gyroscope and Magnetometer 273

39.9.2 Accelerometer Off .. 275

39.9.3 Barometer .. 275

39.9.4 Button .. 277

39.9.5 Humidity ... 277

39.9.6 IO .. 278

39.9.7 IR .. 279

39.9.8 Optical Sensor .. 280

39.10 BT: SensorTag 2541 .. 281

Guide to Using Best Calculator Page | 15

39.10.1 Accelerometer .. 281

39.10.2 Accelerometer Off .. 282

39.10.3 Accelerometer to Magic Light .. 283

39.10.4 Barometer .. 284

39.10.5 Button .. 285

39.10.6 Gyroscope .. 286

39.10.7 Humidity ... 287

39.10.8 IR .. 288

39.10.9 Magnetometer ... 290

39.10.10 Raw access to SensorTag ... 291

39.10.11 Raw callback with the SensorTag ... 292

39.11 EX: BC BASIC Quick Samples... 293

39.11.1 Colorful Countdown ... 293

39.11.2 Grams of Fat to Calories ... 295

39.11.3 Miles per Gallon ... 295

39.11.4 Right Triangle calculator .. 296

39.11.5 Tip Calculator ... 297

39.11.6 Welcome to BC BASIC .. 298

39.12 EX: Files, CSV and JSON, HTML, Flow ... 299

39.12.1 Appending to a file ... 299

39.12.2 Http.Get(url, headers) reads data from the internet 300

39.12.3 Microsoft Flow example ... 301

39.12.4 Read Entire File .. 304

39.12.5 Reading a CSV file ... 305

39.12.6 Writing to a file (including CSV) ... 305

39.13 EX: Financial ... 306

39.13.1 Common Tip Values ... 306

Guide to Using Best Calculator Page | 16

39.13.2 Compound Interest .. 308

39.13.3 Doubling Time .. 309

39.13.4 Future Value ... 310

39.13.5 Money Conversion ... 311

39.13.6 Present Value ... 312

39.13.7 Return on Investment .. 313

39.14 EX: Real Estate .. 314

39.14.1 Acres to square feet ... 314

39.14.2 Debt to Income calculations .. 314

39.14.3 Minimum and Maximum density ... 315

39.14.4 Rectangle in feet to acres... 316

39.14.5 Square feet to acres ... 317

39.15 EX: Space and Astronomy .. 317

39.15.1 Arc Length .. 317

39.15.2 AU to Meters .. 318

39.15.3 Conversion Library ... 318

39.15.4 Distance to horizon .. 320

39.15.5 Lightyears to Parsecs .. 321

39.15.6 Meters to AU .. 321

39.15.7 Parsecs to Lightyears .. 321

39.15.8 Rocket Equation ... 322

39.16 EX: Statistics ... 324

39.16.1 Finite Population Correction .. 324

39.16.2 Margin of Error ... 324

39.16.3 Pfail ... 325

39.16.4 Sample Size .. 325

39.16.5 Sample Size Library .. 327

Guide to Using Best Calculator Page | 17

Index to Best Calculator Manual .. 329

Guide to Using Best Calculator Page | 18

Best Calculator editions

There are two editions of Best Calculator: the classic Best Calculator which has

been shipped, free and with no ads, for several years. It’s extended to be

programmable in BASIC. This simple language lets anyone write small programs

to help automate some of the specialized math.

The standard edition splash screen

with yellow “Programmable” stripe

The Best Calculator, IOT edition takes the familiar and powerful Best Calculator

and adds the ability to connect to a range of IOT (Internet of Thing) devices. All

the parts in common with the standard edition of Best Calculator are free; the

rest require a small payment.

As of December, 2016, the IOT capabilities are the ability to communicate to

Bluetooth LE devices. Both low level access and simplified, higher-level

specializations are available for a number of Bluetooth devices. There is a free

trial so you can make sure that the app has the capabilities you need.

The IOT edition with the blue

Bluetooth stripe

This manual describes both editions. There will be a note for each feature that

is only part of a paid edition.

Guide to Using Best Calculator Page | 19

1 A QUICK TOUR OF

BEST CALCULATOR

Best Calculator has Pages (in green)

for common calculations, Solvers (in

red) for specialized calculations, and

Help and Feedback keys (in brown).

The most common pages that you’ll

use in Best Calculator are the

Calculator and Advanced pages.

The Calculator page (shown in the

example) is a simple calculator.

The Advanced page is where you

can access the angle (trigonometry),

logarithm and other advanced math functions. When you are on a wide screen,

selecting Advanced will display both the advanced functions and the regular

calculator.

The available pages are:

1. BC BASIC lets you program your calculator using the popular BASIC

language.

2. Calculator is a common calculator

3. Advanced includes trigonometry and logarithm functions

4. Format lets you change how the results are displays

5. Constants lists common physical constants (like gravity)

6. Memory lets you save, recall and change memory slots

7. Programmer’s calculator is for hex and binary operations

8. Statistical calculator performs basic statistics on columns of numbers

9. Conversions and tables lets you convert between common units like

converting liters to gallons. It also includes an ASCII table and Unicode

lookup

Use the menu on the left to pick a

calculator page to use

Guide to Using Best Calculator Page | 20

The available solvers are

1. Electrical Engineering

a. Voltage, Current and Resistance (V=IR)

b. Resistors

c. Resistor color code

d. Capacitors

2. Financial

a. CAGR (Compound Annual Growth Rate)

b. Mortgage calculations

c. WACC (Weighted average cost of capital)

3. Geometry

a. Circles

b. Right Triangles

c. Slope

4. Health

a. Ideal Heart Rate

b. BMI (Body Mass Index) and BMI for Kids

c. Pulse

5. Dice

The feedback page lets you give feedback about Best Calculator. We always

include requested features in each new release!

Are you using a Microsoft keyboard? You can program in the Best Calculator as

the calculator program. See the Advanced Windows Features chapter for

details.

Back Button on the Phone. The Back button lets you quickly switch between

any two calculator pages or solvers. Once in a page, pressing back button once

shows the menu. Pressing back button again switches you to the page you were

at before.

For example, from the menu, go to the Calculator page. Tap the back button,

and you are at the menu. Tap the Advanced page to go to the advanced page.

Tap the Back button again to get to the menu, and once more to get to the

Calculator page.

Guide to Using Best Calculator Page | 21

2 NUMBERS AND

COMMON

CALCULATIONS

2.1 SIMPLE ARITHMETIC
A room is 15 feet by 20 feet. How

many square feet of carpet is

required to cover the floor?

Key in: 15 × 20 =

Answer: 300

Pressing the = key gives the answer

to the entered formula. The

calculator includes the normal + - ×

÷ = math calculations.

2.2 CHAIN CALCULATIONS
Press the = key again to repeat the last calculation (× 20)

Key in: 15 × 20 = =

Answer: 6000

2.3 ALGEBRAIC ENTRY AND PARENTHESES
Calculations are performed as they are entered (“chain input”, or the

confusingly-named “Algebraic entry”)

Key in: 2 + 3 × 4 =

Answer: 20

The 2 + 3 is calculated first and that result is multiplied by 4; this is different

from “school” arithmetic where multiplication and division are calculated first.

Addition, Subtraction, Multiplication,

Division, Equals, Entering numbers

Guide to Using Best Calculator Page | 22

You can force the order of operations by using the left and right parenthesis

keys.

Key in: 2 + (3 × 4) =

Answer: 14

The calculator will empty the display when you type the left parenthesis, will

display the partial calculation (12) when you type the right parenthesis, and the

final result when you type the equals sign (=) .

Best Calculator doesn’t limit how deeply nested the parentheses are.

Best Calculator’s Equation Input mode uses operator precedence where =1+2×3

is calculated as 7. This is similar to what some calculators call an “Algebraic

Entry System with Hierarchy”, “Algebraic Operating System”, “Direct Algebraic

Logic” or “Visually Perfect Algebraic Method”.

2.4 EDITING ERRORS AND CLEARING THE DISPLAY

The C, CE and ⌫ keys are used to edit input errors and clear the calculator. The

Clear Al key clears the calculator to its default state.

Key in: 22 + 33 = C

Result: 0

Key in: 22 + 33 CE 44 =

Result: 66

The CE (Clear Entry) key clears the current entry. In the example, it clears just

the ‘33’ entry. When you type in ‘34’ and ‘=’, the calculation finished as if you

had just entered 22 +4 4. The answer is ‘66’.

Key in: 22 + 33 ⌫ 7 =

Result: 59

The ⌫ (Delete) key deletes just the last number entered. In the example, it

clears just the second ‘3’ in the ‘33’ entry. When you type in ‘7’ and ‘=’, the

calculator finishes its calculation as if you had just entered 22 + 37. The answer

is 59.

Guide to Using Best Calculator Page | 23

3 MEMORY KEYS

3.1 MEMORY OPERATION
The four memory keys let you save

and recall values from the

calculator.

Save a number to memory

Key in: 45 M

Answer: 45 is displayed

Recall a number from memory

Key in: C M

Answer: the screen is cleared and then 45 is displayed

The C key will clear the display. M will copy the memory value to the display.

See the Memory Page section for advanced memory usage.

3.2 EXAMPLE
You are planning on doing a number of calculations using your local tax rate (in

the example, 8.25%). Store the tax rate into memory and then use it later on.

Calculate the tax (8.25%) on two different values (10 and 20)

Key in: 8.25 M

Key in: 10 + M % =

Answer: 10.825

Key in: 20 + M % =

Answer: 21.65

The →M key places the current number into memory. The M→ key retrieves

the memory value and places it into the display just as if you had typed it.

Basic Memory operations include get

from memory, store into memory

Guide to Using Best Calculator Page | 24

3.3 MEMORY ADD AND SUBTRACT
The M+ key adds and the M- key subtracts the current number to or from the

existing memory value.

Key in: 45 M M+ M

Answer: 46

First the number 45 is put into memory (45 M). Then the memory value is

incremented (M+). Finally, the incremented value is displayed (M)

The M- key subtracts the current number to the existing memory value.

Guide to Using Best Calculator Page | 25

4 MORE MATH

4.1 SQUARE (X²) KEY
If you have a square 5 inches on a

side, how many square inches is the

square?

Key in: 5 x²

Answer: 25

The x² key is the same as

multiplying the current number by

itself. In the example, it’s the same

as entering 5 × 5 =

The x² key squares the number

instantly without you tapping the = key.

4.2 SQUARE ROOT (√) KEY
The √ square root key finds the square root of the current number.

If you have a tile and know that it is 25 square inches, how long is it on a side?

Key in: 25 √

Answer: 5

4.3 INVERSE (1/X) KEY
What’s ⅓ + ⅓?

Key in: 3 1/x + 3 1/x =

Answer: 0.666

4.4 CHANGE SIGN (±) KEY
The ± key will change the current number from positive to negative or from

negative to positive.

Best Calculator includes math

functions like square root, square,

inverse, change sign

Guide to Using Best Calculator Page | 26

5 SCIENTIFIC NOTATION

5.1 USING THE EE KEY
Some numbers are too large or too small to enter conveniently. This is where

you can use the EE key to enter your number in exponential (scientific) notation.

Avogadro’s number is about 6.022 × 1023 and the atomic weight of water is

about 18. How many molecules of water are in a single gram of water?

Key in: 6.022 EE 23 ÷ 18 =

Answer: 3.34 E 22, or 3.34 × 1022

To enter a negative exponent, use the – key. The ± will change the whole

number from positive to negative.

The mass of a single oxygen atom is about 2.68 × 10-26 kilograms. What is the

mass of 20 atoms of oxygen?

Key in: 2.68 EE – 26 × 20

Answer: 5.36E-25 or 3.34 × 10-25

Best Calculator will display the result based on the selection in the Format

section. If you are dealing with small numbers and are just seeing a “0” instead

of a result in scientific notation, go to the Format screen and enter “Exponent”.

Guide to Using Best Calculator Page | 27

6 PERCENT KEY %

6.1 PERCENT (%) KEY
Given that you’re already entered

an equation (for example 72 – 20),

pressing the % key will convert the

20 into 20% of 72.

If you have entered only a single

number (e.g., just “5”), then the %

key will convert the 5 into 0.05 (as if

calculating 5% of 100)

6.2 CALCULATING SALES TAX
You are buying an item that costs $72 and the sales tax is 5%. What is the total

cost?

Key in: 72 + 5 % =

Answer: 75.60

6.3 CALCULATING SALES WITH A PERCENT DISCOUNT
You are buying an item with a 20% pre-tax discount, and the sales tax is 5%.

What’s the total?

Key in: 72 – 20 % + 5 % =

Answer: 60.48

The percent key is used for taxes and

more

Guide to Using Best Calculator Page | 28

7 TRIGONOMETRY KEYS ON

THE ADVANCED

CALCULATOR

The trigonometry (angle) keys are part of

the Advanced calculator.

Best Calculator includes sin, cos and

tangent and their inverses.

7.1 CALCULATE IN DEGREES OR

RADIANS
Calculations can be done in either

degrees or radians. The display will

show (in small type) whether you are currently in degree mode or radian

mode.

Press the degrees key to switch to degree mode; press the radians key to switch

to radian mode.

Press the dr key to convert a number in degrees to a number in radians.

Press the rd key for the reverse conversion from radians to degrees.

Convert 30° to radians

Key in: 30 dr

Answer: 0.5236

The dr and rd keys work regardless of the degrees and radians settings.

7.2 SIN, COS, TAN
Calculate the sin of 30°

Key in: 30 sin

Answer: 0.50

If you get an answer of -0.9880, the calculator is in radians mode; key in

degrees to switch to calculating in degrees

Angle keys include sin, cos, tan,

inverses, and degrees, radians

and conversions.

Guide to Using Best Calculator Page | 29

Calculate the cosine of ¼π

Key in: radians 0.25 × π = cos
Answer: 0.7071

You can perform the same calculation using parenthesis

Key in: radians (0.25 × π) cos
Answer: 0.7071

The result of sin, cosine and tangent are always between -1 and 1.

7.3 INVERSE SIN, COS, TAN
(Also called arcsine, arccosine and arctangent)

Given the sin, cosine or tangent of an angle, you can get the original angle back

out. The result will be an angle between 0° and 360° degrees or 0 to 2π radians

Calculate the inverse sin (arcsine) of 0.5

Key in: 0.5 sin-1

Answer: 30

If you get the answer 0.5236, the calculator is in radians mode; key in degrees

to switch to degree mode.

The input values must be between -1 and 1; otherwise a NaN value is calculated.

The notation sin-1 is the John Herschel notation; it means “inverse sine” and not

“raised to a power”.

Guide to Using Best Calculator Page | 30

8 LOGARITHMS ON THE

ADVANCED CALCULATOR

Logarithm keys are part of the advanced

calculator.

Calculate the logarithm (base 10) of 100,

1000 and 100000,

Key in: 100 log

Answer: 2

Key in: 1000 log

Answer: 3

Key in: 100000 log

Answer: 5

With base-10 logarithms, the log of a number Is related to how many digits long

the number is.

Best Calculator lets you calculate logs in three bases:

• The log key calculates using base 10

• The ln key calculates using base e (also called the natural logarithm)

• The log2 key calculates using base 2 (binary, also called lb)

Each key is paired with the corresponding power key: 10x, ex, and 2x.

The base 2 logarithm is used by computer programmers to determine how

many bits are required to hold a number of a certain magnitude.

How many bits are needed to hold a number that hold 26 distinct values?

Key in: 26 log2

Answer: 4.7004

Best Calculator includes

logarithm and exponent keys

Guide to Using Best Calculator Page | 31

9 POWERS, ROOTS, X!, MOD

ON THE ADVANCED

CALCULATOR

9.1 FACTORIAL (X!) KEY
Calculate 6! (6 factorial)

Key in: 6 x!

Answer: 720

6! is another way of writing 6 x 5 x 4 x 3

x 2 x 1

9.2 MOD KEY
The Mod (Modulo) key calculates the remainder of a number. The remainder is

the part that's left over when one number is divided by another.

What is the reminder of 7 / 4?

Key in: 11 Mod 4 =

Answer: 3

4 goes into 11 2 times with 3 left over.

9.3 CUBE (X3) AND CUBE ROOT (∛X) KEYS
What is 4.53? (4.5 raised to the 3rd power, or 4.5 × 4.5 × 4.5)

Key in: 4.5 x3

Answer: 91.125

What is cube root of 27?

Key in: 27 ∛

Answer: 3

Powers and roots plus factorial

and the mod operator.

Guide to Using Best Calculator Page | 32

9.4 ARBITRARY POWER (XY) AND ROOT (Y√X) KEYS
Best Calculator calculates numbers raised to arbitrary powers and take arbitrary

roots. The powers do not have to be integers.

What is 64

Key in: 6 xy 4 =

Answer: 1296

What is the 4th root of 32?

Key in 32 y√x 4

Answer: 2.3784

Guide to Using Best Calculator Page | 33

10 ROUNDING AND ABS ON

THE ADVANCED

CALCULATOR

Rounding keys are in the advanced

calculator.

Floor: round downwards to be a smaller

number. The floor of a negative

number (like -3.5) is rounded to a

smaller number (-4)

Ceil: round upwards to a larger number.

The ceil of a negative number (like -3.5)

is rounded up to a larger number (-3)

Round: round towards to closest number. For example, 3.2 round is 3; 3.8

round is 4. Numbers that are exactly half-way between will round to the nearest

even number (1.5 rounds to 2 and 4.5 rounds to 4)

Integer: rounds towards zero. The integer value of 4.5 is 4; and the value of -5.5

is -5. It is like removing everything past the decimal point.

Frac: returns the fraction part of a number

Calculate the remainder of 5.83

Key in: 5.83 remain

Answer: 0.83

Abs: convert negative numbers into positive numbers.

What is the absolute value of -4.5?

Key in: 4.5 +- abs

Answer: 4.5

Rounding, remainder and

absolute value

(smaller) (larger)

The number line. Numbers further to the right are larger; numbers further to

the left are smaller. -3 is smaller than -2 because it’s further left.

Guide to Using Best Calculator Page | 34

11 RANDOM NUMBERS ON

THE ADVANCED

CALCULATOR

Best Calculator has two different

random number keys.

The rnd key will place a random number

between 0 and 1 into the result.

The rnd N key will place a random

integer into the display; it will be

between 1 and the number in the

display.

Make a random number between 1 and 12

Key in: 12 rnd N

Answer: 3 (might be any number 1 to 12)

Make a random number between 0 and 1

Key in: rnd

Answer: 0.841 (might be any number 0 to 1)

Random Numbers

Guide to Using Best Calculator Page | 35

12 FORMATTING

Set how your results are displayed with

the Format page.

Best Calculator can display numbers as

regular numbers (“456.123”) or as

exponents (“4.56123E+002)

You can pick how many numbers after

the decimal place to display.

The current formatting is always shown

on the result display, right above the

result. In the example, the display is

“standard with 4 digits past the decimal

point”

12.1 STANDARD FORMATTING
Regular number or exponent? Automatically selected

Special features “zero suppress” removes extra zeros
after the decimal point.

The standard format is the one that’s on by default when you first start the

calculator. It will automatically switch between regular number and exponential

form. The number of digits past the decimal place is a maximum number of

digits; extra zeros are automatically suppressed (as is the decimal point).

In the example, up to 4 digits will be printed after the decimal point. The actual

number (456.123000) has only zero beyond the “.123”, and so they are

suppressed.

Change how your results are

displayed with the Format page.

Guide to Using Best Calculator Page | 36

12.2 EXPONENT FORMATTING
Regular number or exponent? Always exponent

Sometimes called scientific notation, the exponent format is useful when you

are dealing with large numbers much of the time.

In the example, the display (4.5612E+002) represents the number 4.5612 × 102.

This in turn is 4.5612 × 100, or 456.12. The value is rounded from it’s real value

(456.123) because the display has been set to only show 4 digits of precision.

A negative exponent (4.5612E-002) is less than zero (0.045612)

Exponent notation is equal to .NET’s “E” format

12.3 FIXED FORMATTING
Regular number or exponent? Regular number

Special features Can overflow the display

The fixed format always displays using regular notation with a certain number of

figures after the decimal point. It’s often used when dealing with repeated

calculations where each calculation should display the same way

In the example, exactly 4 digits will be printed after the decimal point.

If the number is too large to fit into the display, the display will be resized. After

a certain point, the number will no longer fit, and will be truncated.

Fixed formatting is equal to .NET’s “F” format

12.4 NATURAL FORMATTING
Regular number or exponent? Regular number

Special features Displays with commas

Guide to Using Best Calculator Page | 37

Similar to Fixed formatting, Natural formatting will display the number with

comas separating the units.

If the number is too large to fit into the display, the display will be resized. After

a certain point, the number will no longer fit, and will be truncated.

Fixed formatting is equal to .NET’s “N” format

12.5 PERCENT FORMATTING
Regular number or exponent? Regular number

Special features Number is display as a percent: it’s
multiplied by 100 and displayed with
a percent sign

The percent format is used when you need to show a number as a percent.

In the example, the number has been automatically multiplied by 100 and a

percent sign is displayed. Note that the “real” number inside the calculator isn’t

changed: adding 1 to the example (456.123) results in 457.123 which is

displayed as 457,12.3000%

Percent formatting is equal to .NET’s “P” format

Guide to Using Best Calculator Page | 38

13 CONSTANTS

The Constants page lets to pick common

physical constants often used in

calculations.

13.1 Π AND E
Press the π key to set the display to the

value of π (about 3.1416).

Press the e key to set the display to the

value of e (about 2.7183)

Calculate 4 * π

Key in: 4 × π =

Answer: 12.5664

13.2 GN C AND NA
gn (about 9.8) is the standard gravity in metric units; it’s the gravitational

acceleration on Earth, measured in meters/second2.

c is the speed of light (about 299792458) in meters/seconds

Na is Avogadro’s number (about 6.022x1023) is the number of atoms or

molecules in one mole of a substance. For example, there are Na atoms of

carbon (specifically, 12C) in 12 grams of carbon.

13.3 NAN, ∞ AND -∞
Best Calculator includes three special constants that can’t be typed in

otherwise.

NaN (Not a Number) means that a numeric value is not meaningful. For

example, an inverse sin (sin-1) is only meaningful for input values -1 to 1.

Calculating sin-1 of 2 will result in a NaN result.

∞ is positive infinity, and -∞ is negative infinity.

Best Calculator includes useful

constants

Guide to Using Best Calculator Page | 39

14 MEMORY PAGE

The Memory page gives you access to 10

named memory slots. Each slot can be

set, changed, and named.

The first memory slot (normally called

Memory0) is the memory used by the

main Calculator screen for memory

operations.

14.1 SHOW THE OPERATION OF

MEMORY0
The main calculator screen includes 4

memory keys (M, M, M+ and M-).

These directly manipulate the first

memory slot.

Enter 45 into memory slot 0. Go to the Calculator page.

Key in: 45

Answer: 45 is displayed

Now go to the Memory page. The first memory slot is set to 45.

14.2 SAVING AND ROAMING
The memory values are roamed: when you set a memory value, the value and

name are roamed to all of the computers where you’re logged in with the same

Microsoft Account. The values will be saved between calculator runs; you can

exit the calculator and the values will be preserved for the next time you run

Best Calculator.

14.3 NAME A MEMORY CELL
Click on the name of a memory cell to rename it.

Set, Increment, Decrement

Click on a memory value to change it. You should only enter numeric values!

Memory operations: rename,

set, get from display, copy to

display, increment, decrement,

clear.

Guide to Using Best Calculator Page | 40

Click on the + key to increment a memory value

Click on the – key to decrement a memory value

14.4 GET FROM DISPLAY AND COPY TO DISPLAY
The ←▣ key gets data from the display into the memory slot.

The →▣ key copies data from the memory slot to the display

14.5 CLEAR
The C key clears the memory slot

14.6 MEMORY AND BC BASIC
The values in the memory page are shared with the BC Basic Memory extension.

You can get and set values from the calculator memory slots from within BC

BASIC. Changes you make there will be reflected in the memory page.

Guide to Using Best Calculator Page | 41

15 DATES PAGE

The Dates page lets you perform various

date calculations.

15.1 COMPARE DATES
How many days are there between June

15th and October 19th?

Key in: Select Compare Dates from

the drop-down. Set the Starting

Date to June 15th, and the Ending

Date to October 19th. Keep the

Calendar type as Gregorian.

Answer: 126 days (18 weeks

exactly)

You can compare dates in multiple formats

• Gregorian is the standard calendar used in America and Europe

• Hebrew (הַלּוּחַַ הָעִבְרִי) is a lunisolar Jewish calendar

• Hijiri (گاهشماری هجری خورشیدی) is a calendar used in Iran and Afganistan

• Japanese calendar

• Julian is the common calendar used in Europe and America until being

replaced by the Gregorian calendar

• Korean

• Persian

• Taiwan

• Thai

• Umm Al-Qura

15.2 CONVERT TO GREGORIAN
The Great Feast of Theophany is celebrated on the 6th of January, Julian. In

2016, what day is this in the Gregorian calendar?

Date calculations include

calculating days between dates,

adding days and calendar

conversions

Guide to Using Best Calculator Page | 42

Key in: Select Convert to Gregorian from the drop-down. Set the

Starting Date to January 6th, 2016 and set the calendar type to

Julian.

Answer: January 19, 2016

15.3 ADD DAYS
A project is started on April 19, 2016, and will take 21 days. What day will the

project end on?

Key in: Select Add days from the drop-down. Set the Starting

Date to April 19th, 2016 and keep the calendar type as Gregorian.

St the Number of days to add to 21.

Answer: Tuesday, May 10, 2016

Guide to Using Best Calculator Page | 43

16 HEX, DECIMAL, OCTAL,

BINARY ON THE

PROGRAMMER’S

CALCULATOR

The Hex, Decimal, Octal and Binary

entry and conversions are part of

the Programmers Calculator.

16.1 SETTING THE MODE
Press the bin, oct, dec or hex keys

to switch to binary (base-2), octal (base-8), decimal (base-10) or hexadecimal

(base 16). The display will show which mode the Programmer’s Calculator is in.

To enter a value, simply press the keys 0 to 9 or A-F. Valid keys will be displayed

in Cyan; invalid keys are gray. In the example, the calculator is in decimal mode

so that keys 0 to 9 are all valid. In binary mode, only keys 0 and 1 are valid; in

octal mode only keys 0 to 7, and in hexadecimal mode keys 0 to 9 and A to F.

Add the number 1A to the number 12

Key in: hex 1 A + 1 2 =

Answer: 2C

16.2 CONVERTING BETWEEN BASES
To convert from the current base to a different base, simply press the new base

number. The existing display will be converted to the new base

Convert 2C16 into decimal

Key in: hex 2 C dec

Answer: 44

Hex, Decimal, Octal and Binary entry

and conversions are built in

Guide to Using Best Calculator Page | 44

17 BIT OPERATORS ON THE

PROGRAMMER’S

CALCULATOR

The Bit operators are part of the

Programmer’s calculator

17.1 B# (COUNT BITS)
Use the B# key to count the number

of ‘1’ bits.

How many bits are ‘1’ bits in the hex

number 44?

Key in: hex 4 4 B#

Answer: 2

Hex 44 is binary 01000100. Only two of those bits are ‘1’ bits.

17.2 INVERSE (~) AND 2’S COMPLEMENT
The ~ key will invert each of the bits of the current value. This is also called the

“1’s complement” of the number.

The 2’s key calculates the “2’s complement” of a number. This is what (almost

every) computer stores as the negative value of a number.

How does a computer store -1?

Key in: dec 1 2’s

Answer: FFFFFFFF

17.3 AND (&), OR (|) , XOR (^)
The And, Or and Xor keys will and, or xor (exclusive-or) two numbers.

What is 3 AND 4?

Key in: 3 & 4 =

Answer: 7

Basic Memory operations: get from

memory, store into memory

Guide to Using Best Calculator Page | 45

18 BYTES AND SWABBING

ON THE

PROGRAMMER’S

CALCULATOR

The bytes and swap operators are

part of the Programmer’s

calculator.

18.1 BYTES
Many programmer calculations change depending on the number of bytes that

are involved in an operation. Common sizes are byte (▯), word (2 bytes, ◫) and

dword (4 bytes, ◫◫). The result display shows the number of bytes as “BYTE”,

“WORD” and “DWORD”. Results that are larger than the current setting will be

truncated.

18.2 SWAB (SWAP BYTES) KEY
The key performs the SWAB (swap bytes) operation. This is commonly used

when dealing with network operations: most network protocols send data using

“big endian” format while most PCs are in “little endian” format.

What’s the network byte order for port 80? Port numbers are sent as 2 bytes.

Key in: ◫ dec 8 0

Result: 20480

Explanation:

• ◫ switches to WORD (2 byte) mode

• dec switches to decimal mode

• 8 0 puts the number 80 into the display

• (SWAB) switches the first and second byte around

Set number size (1, 2, or 4 bytes) and

byte swabbing.

Guide to Using Best Calculator Page | 46

19 SHIFT OPERATORS ON

THE PROGRAMMER’S

CALCULATOR

The Shift operators are part of the

Programmer’s calculator

The shift operators (and especially

the rotate keys) use the byte

setting.

≪ is shift left

≫ is shift right

≪+⃝ is rotate left

≫+⃝ is rotate right

Shift hex F0 left by 2 bits

Key in: hex F 0 ≪ 2 =

Answer: 3C0

In binary, F0 is 1111 0000. Shifted left 2 bits, the result is 11 1100 0000, which is

3C0. Bits introduced on the right are zero.

Ring-shift left F0 by 1 bit as a single byte

Key in: ▯ hex F 0 1 =

Answer: E1

In binary, F0 is 1111 0000. With a normal shift, the bits that “shift out” will be

dropped and new bits are zero. With rotate (ring shift), the bits would have

been dropped are reintroduced on the other side.

In binary, F0 is 1111 0000. When rotated, the top bit (1) is put in as the lowest

bit, resulting in 1110 0001, or E1.

Shift operators: left and right, left and

right rotate (ring shifts), and the

byte/word/dword display

Guide to Using Best Calculator Page | 47

20 PROGRAMMER’S

MATH

The programmer’s calculator can

act as a regular calculator, but only

for integers.

Divide 7 by 3

Key in: 7 ÷ 3 =

Answer: 2

Unlike the regular calculator, where

7 ÷ 3 is 2.3333, the Programmer’s

Calculator is strictly an integer-only calculator.

Additionally, the byte settings will force some results to be truncated

Multiply 99 × 99 in byte mode

Key in: ▯ 9 9 × 9 9 =

Answer: 73

In the regular calculator, 99 × 99 would be 9801. This is (256x38 + 73). Only the

bottom byte (the 73) is kept from the calculation. The rest is discarded.

The programmer’s calculator

performs standard math operations

Guide to Using Best Calculator Page | 48

21 STATISTICAL

CALCULATOR

The Statistical calculator takes in

one or two lists of numbers and

computes robust and classical

statistics, T-tests and linear

regression between two paired

groups of numbers

The statistical calculator will display

the data either as one or two

boxplots (specifically, Tukey

boxplots) or as an XY scatterplot.

Best Calculator always computes all

statistics. As you type numbers into

the data boxes Best Calculator computes and displays the results.

21.1 PARTS OF THE STATISTICAL CALCULATOR SCREEN
The Statistical calculator screen is divided into three parts: the graphs, the

computed results, and the data. There are two data entry boxes, a left box and

a right box, resulting in a left hand data set and a right-hand data set.

1. Graphs at the top present a pictorial view of your data. You can choose

the kind of graphs: two independent boxplots, two boxplots for

comparison (their Y axes will be set to be the same), an XY Scatter plot,

or no graph

2. Computed results for the left and right data sets. Both data sets will

always compute Robust and Classical statistics. The right-hand data set

in addition will compute a T-Test comparison between the left and right

data sets and a linear regression between the left and right data sets.

3. Left and right data sets and their data entry boxes. The data is simply a

list of numbers; you can copy and paste from Excel or simply type the

data in.

Statistical calculator showing the

difference between two samples

Guide to Using Best Calculator Page | 49

21.2 ENTERING DATA
Enter data into the left

and right data boxes.

When Best Calculator

starts, each box is

marked “Data” and

contains some default

values so you can see

what kind of statistics

and graphs Best

Calculator will produce.

To enter data, simply

click on either box. Data

should be entered with

one item per line. To

enter a lot of data, you

can paste the data into

the text box.

Best Calculator is a

calculator, not a

spreadsheet, and does

not understand file

formats like CSV (comma separate value) files, and does not have a way to read

a file from disk.

You can paste values directly from Excel. In Excel, highlight and copy the

column of numbers you want to compute statistics for. Then click on the text

box in Best Calculator and paste.

Data which are not understood as numbers will be ignored. The first line with

text in it will be the title of the data. For example, if you copy a column of

numbers from Excel, you can include the column header and it will be used as

the data title. As you enter data, Best Calculator will automatically recalculate

your statistics.

Enter data either into the left or right text boxes.

Statistics are automatically computed as you

type.

The left box still has the default data in it; the

right box has been cleared. The graphs have

been turned off.

Guide to Using Best Calculator Page | 50

21.3 CLASSICAL STATISTICS

(RESULTS)
Both the left and right hand data

sets will compute classical

statistics. Classical statistics work

best with symmetrical, bell-shaped

normally distributed data.

Lines that are text, not numbers,

or which are blank are never

included in the values.

Mean

The mean (x̄) of the numbers is the arithmetic mean, or average of the

numbers. It’s calculated by adding up all the numbers and dividing by the count

of the numbers.

Count

The count (N) of the number of numbers in the data box.

Sum

The sum (𝚺) is the total of all of the numbers added together.

Sample Standard Deviation

The sample standard deviation (sample stddev, or 𝙨) is very similar to the

population standard deviation, but the N value used is (N-1). The standard

deviation informs you of the overall spread of the data.

Population Standard Deviation

The population standard deviation (pop. stdev , or 𝝈n) is the standard deviation

assuming that the data in the data box is the entire population and not a

sample. It’s similar to but always a little smaller than the sample standard

deviation.

Relative Standard Deviation

The Relative standard deviation (RSD) is a normalized version of the sample

standard deviation. It’s the computed by dividing the sample standard

deviation by the mean. It’s useful for determining the “spread” of a sample

without having to mentally compare the standard deviation with the mean.

Classical

x ̄ (mean) 6.6

N (count) 5

𝚺 (sum) 33

𝙨 (sample stddev) 1.1402

𝝈n (pop. stddev) 1.0198

RSD (rel. stddev) 0.1728

Computed classical statistics

Guide to Using Best Calculator Page | 51

ROBUST STATISTICS (RESULTS)
Both the left and right hand data

sets will compute robust statistics.

Robust statistics are less sensitive

to outliers than classical statistics.

The values computed by Best

Calculator are used to display the

Boxplot.

Lines that are text, not numbers,

or which are blank are not included in the value.

The median value is often used as a representative measure of the data. When

the data is symmetrical, the mean (classical) and median (robust) are the same;

when data is skewed, the median represents a more typical member of the data

while the mean is more weighted towards the high end.

To calculate the robust statistics, the data is sorted. Each robust data point is

the value that is a certain percentile of the overall data. For example, the

median is the 50% percentile; half of the data points are larger than the median

value, and half smaller.

Point Percentile Comments

P90 90th The P90 measure is used to help estimate the
spread of the data. In the boxplot, the P90
point is marked with a small circle.

Q3 75th The Q3 (third quartile) is the ¾ mark. The box
in the boxplot is bounded by the Q# and Q1
points.

Median 50th The median (Q2) is taken from the exact
middle of the sorted data set. It’s marked by
a long horizontal bar in the box of the
boxplot.

Q1 25th The Q1 (first quartile) is the ¼ mark

P10 10th The P10 measure is the opposite of the P90
measure. In the boxplot, the P10 is also
marked with a small circle.

Robust

P90 7.6

Q3 7

Median 7

Q1 6

P10 5.4

Computed robust statistics

Guide to Using Best Calculator Page | 52

REGRESSION (RESULTS)
Use the regression data and the

linear regression chart to tell if two

data sets are related.

The data shows the thickness (in
mils) of a layer of silver deposited
onto a computer chip after a certain
amount of time in a furnace.

The number of minutes is entered
into the left hand data box; the
thickness is entered into the right-
hand data box. If both data sets
have the same number of data
points, Best Calculator will compute
the linear regression statistics.

Values calculated are
Slope and Intercept is the best fit
for a single straight line through the data. These values can be placed directly
into the standard formula for a line, y = mx + b. The slope value is the m
value, and the intercept value is the b value.

The correlation coefficient says how close of a match the data is. If the data

isn’t correlated at all, the correlation is 0. A negative correlation means that as

one value increases, the other decreases (also called a negative correlation). A

value of 1 or -1 means that the data is perfectly correlated.

The StdErr Line (standard error of the line) and StdErr Slope (standard error of

the slope) are tests of how noisy the data is and how good of a fit the computed

slope and intercepts are.

Regression

Slope 0.0037

Intercept 0.0094

Correlation 0.9814

StdErr Line 0.0007

StdErr Slope 0.0004

Computed linear regression statistics

Sample data:

Minutes Thickness

1 0.0132

1.5 0.0151

2 0.0167

2.5 0.0177

3 0.0211

Guide to Using Best Calculator Page | 53

21.4 COMPARE WITH T-TESTS

(RESULTS)
When two data sets are

entered, Best Calculator will

compute a Welch’s t-test value.

Welch’s t-test are used to decide

if the two data sets are “the

same” or “different”. The

boxplots are used informally for

the same purpose.

Note that the t-test is not perfect way to tell if two samples are “different”. For

example, the numbers [10, 20, 30, 40] will be reported to be “possibly the

same” as [25, 25] even through a person would declare them to be very

different.

In the example, the two data sets are from two types of chemical analysis

(http://www.fao.org/docrep/w7295e/w7295e08.htm)

The computed p-value helps answer the question, “are these two data sets

likely to be from the “same” kind of data. If the p value computed is small (set

to 0.05 in Best Calculator), the two data sets must not be the same and are

therefore different. If the p value is large, then no conclusion can be drawn:

perhaps the data is different, but perhaps it’s not.

Welch’s t-test is a more modern version of the Student’s t-test. It’s been shown

to be as good as the Student’s t-test when the sample variances are the same,

and better then they aren’t.

Although the primary calculation from the Welch’s t-test is the p value, the df

(degrees of freedom) and t statistic are also presented.

Compare

The two values are probably DIFFERENT.

The p-value 0.0145 is <= target 0.05

test Welch's t-test

p 0.0145

df 13.9359

t 2.7894

Computed robust statistics

http://www.fao.org/docrep/w7295e/w7295e08.htm

Guide to Using Best Calculator Page | 54

21.5 BOXPLOTS

(GRAPH)
Boxplots are a simple way

to visually compare two

data sets.

The tick marks on the left

(1.4 and 3 in the example)

tell you about what the

range of data is.

The central box shows the

inter-quartile range (IQR)

for the data. Exactly ½ of

the data falls within the

central box; ¼ is less than

and ¼ is more than the box.

The horizontal line in the center of the box is the median of the data set.

The X in the boxplot (usually, but not always, somewhere in the box) is the

average value. The X is the only part of the boxplot computed with classical

statistics instead of robust statistics.

The whiskers can each be as long as 1.5× the IQR. They are trimmed back to

show the furthest-away data point that fits in the whisker. Outliers are not

drawn.

The plots also shows the 10% and 90% percentile data points. These are useful

when determining whether a process has a significant number of outliers or not.

These are shown as the small circles, and will only be displayed when the data

has at least 10 data points.

When you’re displaying two data sets, you can compare the two boxplot or

display them as independent. In compare mode, the two boxplots are display

using the same scale. In independent mode, the two boxplots are display with

their own scale.

Boxplots let you visually compare two data sets

Guide to Using Best Calculator Page | 55

21.6 XY SCATTER-PLOTS

(GRAPH)
XY Scatterplots are a

quick way to compare

paired data.

The sample data used in

the example is the same

data used in the

Regression example.

To make a scatterplot

from your data, enter the

independent data into the

left hand data box and

the dependent data into

the right hand data box.

Then chose “Linear

Regression” as your

graph type.

Each pair of data is

plotted as a small dot,

and the results of the

regression analysis are drawn as a straight line. The headers will be displayed as

the X and Y axis labels.

The min and max axis values are picked based on the data and are not settable.

Highly correlated data will be plotted close to the regression line; uncorrelated

data will be plotted randomly, neither close to nor avoiding the regression line.

The correlation coefficient is computed and displayed as part of the correlation

results.

XY Scatter plot with regression line lets you

visualize the linear regression computation

Sample data:

Minutes Thickness

1 0.0132

1.5 0.0151

2 0.0167

2.5 0.0177

3 0.0211

Guide to Using Best Calculator Page | 56

22 CONVERSIONS

Conversions (like inches to

centimeters) are in the Conversions

and Tables section.

Tap that section first, and then tap

the conversion page you want.

22.1 CONVERTING
All of the converters work the same

way.

To convert a value, enter in the value you have (like “Square inches”) and read

off from the resulting values.

Example: An apartment is 330 square feet. How many square yards is that?

Key in: tap ‘Conversions and Tables’ and then tap ‘Area’. Tap

the text box next to ‘Square Feet’ and type in 330.

Answer: read off 36.67 from the Square yards box

As you enter a number, the surrounding values are automatically calculated.

How many acres are in a square mile?

Key in: tap ‘Conversions and Tables’ and then tap ‘Area’. Tap

the text box next to ‘Square Miles’ and type in 1.

Answer: read off 640 from the Acres box

22.2 COPY TO AND FROM THE CALCULATOR RESULTS DISPLAY
You can copy a number from the calculator results display into any of the text

boxes with the ←▣ key that’s next to each text box.

Your apartment is 10 yards by 4 yards. How many square feet is it?

Key in: in the main calculator, enter 10 × 3 =

Tap ‘Conversions and Tables’ and then tap ‘Area’. Tap the ←▣ key

next to the text box marked ‘Square Yards’. It will be set to

Conversions include area, energy,

length and more.

Guide to Using Best Calculator Page | 57

360.

Answer: read off 360 from the Square Feet box

A square foot of carpet costs $2.04. What is the cost to carpet your apartment?

Key in: from the last example, tap the →▣ key next to the square

feet box. Go to the main calculator; note that it has been set

to 360. Key in × 2.04 =

Answer: $734.40

22.3 AREA CONVERSIONS
Best Calculator can convert between

• Square inches

• Square feet

• Square yards

• Acres

• Square miles

• Square centimeters, meters, hectares, and square kilometers.

A hectare is 10,000 square meters, or 1/100 of a square kilometer.

22.4 ENERGY CONVERSIONS
Best Calculator can convert between:

• Ergs

• Joules

• Kilowatt-Hours

• Calories

• Food calories (KCAL)

• Donuts

• BTUs

• Therms

22.5 LENGTH CONVERSIONS
Best Calculator can convert between

• Inches

Guide to Using Best Calculator Page | 58

• Feet

• Feet + Inches (output only)

• Yards

• Miles

• Centimeters

• Meters

• Kilometers

22.6 TEMPERATURE CONVERSIONS
Best Calculator can convert between

• Degrees Celsius (also called Centigrade)

• Fahrenheit

• Kelvin (absolute temperature in the metric system)

• Rankine (absolute temperature in Fahrenheit)

22.7 WEIGHT
Best Calculator can convert between

• Ounces

• Pounds

• Pounds + Ounces (output only)

• Short tons (2000 pounds)

• Long tons (2240 pounds)

• Grams

• Kilograms

• Tonnes (1000 kilograms; 2204 pounds)

• MMT (millions of metric tons)

• Grains

• Troy Ounces

• Troy Pounds

• Tolä (about 0.41 ounces)

• Sèr (80 Tolä)

• Maund (40 Sèr)

Guide to Using Best Calculator Page | 59

22.8 FARM VOLUMES (US)
Best Calculator can convert between

• Cups

• Pints (2 Cups)

• Quarts (2 Pints)

• Gallons (4 Quarts)

• Pecks (1 Gallons)

• Bushels (4 Pecks)

• Liters

Given a weight in pounds per bushel, Best Calculator will also calculate the

weight of an amount in bushels.

Guide to Using Best Calculator Page | 60

23 ASCII TABLE

The ASCII (American Standard for

Computer Information Interchange)

is a common way for computers to

encode English-language text as

numbers suitable for computer

operation.

Programmers often need to convert

from characters (like “@”) into their

ASCII equal (the number 64).

The example shows the conversions

for the “@” characters, sometimes

called the “Ray” in honor of Ray

Tomlinson, the creator of Internet

email in the 1971.

64 is the decimal value of @
40 is the hex value of @
100 is the octal value of @

In the example, the “@” is shown along with the decimal (64), hex (40) and octal

(100) values.

Example: replace a character with its percent encoding (used in encoding URLs

from arbitrary characters). The rules for percent encoding is to replace the

single character with three characters: a “%” sign and then two digits with the

character’s hex value. The @ hex value is 40, so to replace a single “@” in a

URL, you need to replace it with “%40”.

ASCII table

Guide to Using Best Calculator Page | 61

24 UNICODE

Unicode is the worldwide

specification for characters from all

languages, including emoji and

useful math symbols. Best

Calculator supports Unicode 9.0,

introduced in 2016

24.1 SEARCH RULES
Enter a set of search terms into the

search box. As you type, the display

is updated with matching

characters.

A search term is a match if it’s any part of the character description; short terms

(1 or 2 characters long) and terms that start with = have to match a word

exactly. Examples: a matches LATIN CAPITAL LETTER A and =phi matches LATIN

SMALL LETTER PHI. Longer terms will match anywhere in a description.

Example: LATI matches LATIN CAPITAL LETTER A

Terms that start with a minus sign (-) are anti matches; they invert the normal

processing.

Terms that start with U+ will match a Unicode number exactly.

Each Unicode character includes its Unicode number (like U+41 for LATIN

CAPITAL LETTER A), the character itself, the official description and the official

alternate description. In addition, searches include the Unicode “Block” name.

For example, IPA will match all of the characters in the IPA Extensions block.

24.2 COPYING CHARACTERS
Right-click on a result to bring up the app bar. Tap the clipboard to copy the

character to the clipboard.

Find and copy Unicode characters

including emoji

Guide to Using Best Calculator Page | 62

25 ADVANCED WINDOWS FEATURES

25.1 SHORTCUT ON THE DESKTOP
You can add Best Calculator as a shortcut on your desktop.

The easiest way is to start the regular Windows Explorer (press Windows-E). In

the address bar, enter shell:AppsFolder (see the picture below).

The Explorer will show you all of your installed apps.

Right-click Best Calculator and select “Create a Shortcut”. You will be told that

you can only create a shortcut on the desktop; click “Yes”. A shortcut to Best

Calculator will be placed on your desktop.

Guide to Using Best Calculator Page | 63

25.2 SET AS THE CALCULATOR KEY
Windows keyboards often include pre-programmed buttons to launch common

applications.

You can program the launch buttons to launch Best Calculators.

Run the Microsoft Mouse and Keyboard Center by pressing the Windows key

and typing “Mouse and Keyboard”. The Mouse and Keyboard center program

will show up.

In the example, the center is programming a Microsoft Wired Keyboard 600

with a Calculator key. We’re going to program the calculator key to start Best

Calculator.

Under the Calculator setting, tap “Open a program, webpage, or file”. Then tap

the Windows Explorer button and carefully enter

explorer shell:AppsFolder\48425ShipwreckSoftware.BestCalculator_jh2negtepkzpr!App

Then press the back button.

That’s it! The calculator button should now launch the calculator app. If you

mis-type the long command line, the Windows Explorer will launch instead.

Guide to Using Best Calculator Page | 64

26 A BRIEF HISTORICAL NOTE

As the first programming language designed for students, BASIC holds a special

place in the history of programming languages.

Sample BASIC program from the first Dartmouth BASIC instruction manual, 1964

Calculator BASIC lets you program your own simple functions into the Best

Calculator, extending its abilities to exactly match your needs. Everyone who’s a

specialist has the same problem with typical calculators: there’s some standard

calculation in your profession, but no calculator includes those particular

functions on the keyboard. Best

Adding a program to the Best Calculator is easy. The BC BASIC Library key

shows you all the programs you’ve written, neatly organized into individual

packages. The BC BASIC environment gives you access to a wide variety of

sample programs. Naturally, Help is just a click away. Within the programming

environment you can add or edit your new program, run your program, and

bind your program to any of the five programmable keys on the keyboard.

The programs you write will roam between your computers and your phone.

You can write a program on one computer, and it will automatically roam to

your other computers. (This requires that you’ve signed in with a Microsoft

Account, of course). You can also Export your packages to a file, and then

Import the package into Best Calculator running on another computer.

Guide to Using Best Calculator Page | 65

27 EQUATION INPUT: YOUR FIRST PROGRAM

Tap the BC BASIC and then the Equation Input keys. An Edit windows is

displayed with a mini program. Your first program is written for you so you can

see what a program looks like.

27.1 WHAT IS A PROGRAM?
A program is a list of statements, each of which performs some action. Many

useful programs are just a single equation – for example, to convert feet to

acres, or do a financial calculation

27.2 HOW DO I RUN MY PROGRAM?
Press the (Run Program) key to run the program. When you’re in the editor,

the final result will be displayed. The final result is either the result of the STOP

statement or the result of the last assignment statement.

27.3 HOW CAN I PRINT SOME TEXT?
Use the PRINT statement like this:

PRINT “Calculation complete!”

Guide to Using Best Calculator Page | 66

27.4 HOW CAN MY PROGRAM USE THE CALCULATOR VALUE?
The best way is the Input expression.

X = INPUT DEFAULT 3.4 PROMPT “Enter a tax rate”

Input is only for numeric values (you can’t get a person’s name, for example)

27.5 HOW CAN I WRITE AN EQUATION?
Use LET, the assignment statement, and an expression (equation). For example,

suppose you need to calculate the circumference of a circle and the equation is

PI times the diameter. Your equation might be

LET circumference = PI * diameter

Or suppose you need to calculate the inner diameter of a pipe given the outer

circumference and the pipe thickness.

LET thickness = 3
LET outerCircumference = 30
LET outerDiameter = outerCircumference / PI
LET innerDiameter = outerDiameter – 2 * thickness

27.6 HOW CAN I WRITE TO THE CALCULATOR?
You can write to the calculator in three ways.

You can write a little text message to the top of the calculator display with

Calculator.Message.

Calculator.Message = “Hello World”

Which then show up on the calculator results windows

Use Calculator.Value to get or set the result value

Guide to Using Best Calculator Page | 67

Calculator.Value = 7337

If you end your program with a STOP <value>, the value will be placed into the

calculator display. Or, if there isn’t a stop, then the last assignment statement

(LET statement) evaluated is sent to the calculator. The equation or expression

form (starting a line with just an equals sign), is considered an assignment even

though the value isn’t assigned to a variable.

27.7 WHY DO SOME EXAMPLES START WITH AN = SIGN?
Lines that just start with an equals sign are the “equation” form. You can put

any expression (equation) on the right of the equals, and the value will be

computed. If the

27.8 HOW CAN I MAKE SEVERAL DIFFERENT PROGRAMS?
See the section on using the library. You can write different programs and give

them all different names. They will even roam between your different devices.

27.9 WHAT ARE ALL THE KEYS ON THE SCREEN?
The (Back) key will take you to the Library.

The (Help) key pops up this manual

The (Web) key takes you to the Best Calculator web site.

The (Bind key) key lets you program one of the goldenrod (dark yellow)

keys with your program. That way you can run your program straight from the

regular calculator.

Guide to Using Best Calculator Page | 68

The (Save) key will save your program.

The (play) key will run your program. You can also press the F5 key.

The (screen) key will clear the colorful output screen. That screen is only

displayed if you PRINT output.

Under the edit area is the “PARSE” output; it tells you if your program “parses”

correctly – it tells you if and when you make a mistake. Don’t fret too much

about making parse errors; experienced programmer make them all the time

The BC BASIC Samples key show you a few simple samples to get started.

The Special Characters key lets you insert some of the hard-to-type characters

that BC BASIC can use.

27.10 HOW CAN I LEARN MORE?
The Reference: Language Basics section tells you everything that makes up a

valid BC BASIC program. As a helpful reminder, press the BC BASIC Samples key

to get a little pop-up with some common code snippets. Or press the big key

to see this manual.

A BC BASIC program is a series of statements (lines); each line is an equation. A

common statement is assignment, which lets you do math. Other common

statements are PRINT and INPUT to print results for the user and get numerical

values from the user.

Guide to Using Best Calculator Page | 69

28 SIGMA FUNCTION: ADVANCED PROGRAMMING

Press the BC BASIC and then the Sigma Function Input keys. An Edit windows is

displayed with a mini sigma expression program. Your first expression is written

for you so you can see what a program looks like.

The Sigma Function page will run an expression that you provide, summing up

the response.

Press (Play) or F5 and see the result

Guide to Using Best Calculator Page | 70

The Sigma function is run 11 times. Each time the variable n is set, first to 0,

then to 1, and so on up to and including 10. The value of the expression is

summed, and the overall value displayed.

Press the →▣ key to copy the result into the calculator display.

The rest of the Sigma Function page is the same as the Equation Input page.

The Samples include an example of the Taylor expansion to calculate the Sin of a

value

REM TAYLOR expansion for SIN
REM Convert n(0,1,2,3,4) into series (1,3,5,7,9...)
series = n*2+ 1
x = Calculator.Value
val = x**series / Math.Factorial(series)
isOdd = (Math.Mod (n,2) = 1)
IF (isOdd) THEN val = -val
=val

The Taylor expansion for Sin requires a series of numbers 1, 3, 5, 7, and so on.

The Sigma function only produces numbers 0, 1, 2, 3, … .The first step is to

convert the n value (0, 1, 2, 3, …) into a series value (1, 3, 5). This is done with

the line series = n*2+1.

Next the code calculates the xseries value and divides by series!. Odd parts of the

sequence are supposed to be subtracted from the sequence, so those are

negated.

The x value is taken from the Calculator.Value number from the calculator

display.

Lastly the resulting value for a single series value is return (=val).

Guide to Using Best Calculator Page | 71

29 WHAT ALL CAN YOU DO IN THE BC BASIC

ENVIRONMENT?

It’s time for a introduction to all of the different dialogs you will use to create

and run your programs.

29.1 ALL THE MAIN EDIT DIALOGS

Library of
Packages

Library
Properties

Bind a program
to a key

About this
package

List of
programs

About this
program

Edit program

Guide to Using Best Calculator Page | 72

29.2 LIBRARY OF PACKAGES

Library of Package is the first library dialog you see. It lists all of the packages

that you can run, examine, or change.

In the Library of Packages dialog there are many important controls.

Control How and when to use it

Back arrow

The big back arrow is present on all of the dialogs.
Press it to return to the parent dialog. If you are in the
Library of Packages dialog, the BC BASIC environment
will be hidden, and you can see the Best Calculator
display.

Don’t worry! None of your changes are lost. Just
press the BC BASIC key to see the Library of Packages
dialog again

The little “chevron” arrow is a Best Calculator arrow; it
hides the Best Calculator menu of calculators.

Guide to Using Best Calculator Page | 73

Help

Displays the main HELP PDF page using the default
PDF reader (often a web browser).

📓
Buy the manual

Goes to Amazon.com. You can buy a copy of the Best
Calculator manual from Amazon.

Web site

Goes to the Best Calculator web site

Bind Key

Displays the Bind a program to a key dialog. This lets
you bind one of your programs to one of the P1, P2
and so on key in the Best Calculator keyboard. When
you press a key, the program you selected will be run.

Create new package

Creates a new package. The new package gets a name

which you should change. Use the GEAR icon () to
change the name.

Properties

Displays up the Library Properties dialog. From this
dialog you can Import a BC BASIC package.

You can also tap on individual packages in the list of packages. Each package

entry shows its name and description and includes a GEAR icon to display the

package details.

Control When and how to use it

Tap on a package Brings up the List of programs for that package.
From the list you can add new programs and
edit and run your programs.

Properties

Bring up the About this package dialog. From
that dialog you can change the name and
description for a package.

Guide to Using Best Calculator Page | 74

29.3 LIBRARY PROPERTIES (IMPORT BC BASIC PACKAGE)
Bring up the Library Properties dialog by tapping the Library of Packages GEAR

key (, highlighted). The Library of Packages header lets you go to the help

file, bind a program to a key, add a package for your programs or display the

library properties screen.

In the Library properties there is a single control

Control When and how to use it

Import

Brings up the Import dialog. Use this to import
(read in) new BC BASIC packages from your job,
your school, your friends, or even the internet.

Guide to Using Best Calculator Page | 75

29.4 BIND A PROGRAM TO A KEY

Bring up the Bind a program to a key screen by tapping the Library of Packages

BIND key (highlighted below)

There are several programmable key which you can bind a program to. When

you tap one of those keys, the program that has been bound will be run. When

you first get Best Calculator, a selection of programs has already been bound.

To pick a program to run when a programmable key is pressed, select an answer

to the three questions in the Bind a program to a key screen and tap SAVE.

The first question is What key do you want to bind to? Tap one of the keys in

the key list (labeled P1, P2, P3 and so on) to pick a key to bind to. People often

just pick key P1. The key list tells you what package and program the key is

currently bound to. This helps you pick the right key to use.

Guide to Using Best Calculator Page | 76

The second question is What package is the program in? All the possible

packages are listed. As you tap on a package, the next list changes to show the

programs in that package. Tap on the package with the program you want to

run.

The third question is What program do you want to run? Tap the program to

run.

Lastly, be sure to tap the SAVE key (). Your selection isn’t saved until you

press save.

You can keep on binding programs to more keys, or press the BACK ARROW (

)to go back to your last dialog box.

29.5 ABOUT THIS PACKAGE

Bring up the About this package by tapping either the GEAR () or LOCK ()

in the package listing (see highlighted) in the Library of Packages screen.

Guide to Using Best Calculator Page | 77

The About this package screen lets you change the name and description of a

package, delete it, or export it (save it to an external file).

polYou can only modify your own packages (the ones with a GEAR icon).

Packages that came with Best Calculator (with a LOCK icon) cannot be modified.

Control When and how to use it

Name You can change the name of the package here. Just
enter a new name. The name is automatically
saved.

Description You can change the description of the package
here. Just enter or modify the description. It will
be automatically saved.

Delete

Deletes the package. Once deleted, you will not be
able to bring the package back. You will be
prompted to confirm the delete.

Save As

Saves (exports) the package (and all the programs
in it). You will be prompted for a file name to save
to.

Once you Save (Export) a package, you can store it
in OneDrive, save to a web page, or email to a
friend or coworker. They can Import the package
from the Library Properties page.

Guide to Using Best Calculator Page | 78

29.6 LIST OF PROGRAMS
Bring up the list of programs by tapping on a package in the Library of Packages

screen.

Packages contain multiple programs which you can run. The List of programs

screen lets you see all and run the programs in a package, add new programs,

edit programs, and more.

Control When and how to use it

Add Program

Adds a new program to the package. Once

created, you will need to tap the GEAR () to
set the program’s name and description.

You can only add programs to your own
packages. Packages that came with Best
Calculator cannot be modified.

Clear Screen

Clears the output screen. If the output screen is
not visible, you won’t see a change (but it will
be cleared nonetheless)

You can also tap on individual programs in the list of programs. Each program

entry shows the name and description of the program and lets you run and

Guide to Using Best Calculator Page | 79

examine the properties of the program. If the program is one you wrote, you

can also edit it.

Control When and how to use it

Tap on a program Does nothing in particular ☺

Run program

Runs the program from the start

Properties

Displays the About this program dialog. From
that dialog you can edit the program name and
description.

Edit program

Display the Edit Program dialog. From that
dialog you can edit and run the program.

Packages that come with Best Calculator
cannot be modified. For those program, the
Edit key will show you the source code for the
program but will not let you change it.

Guide to Using Best Calculator Page | 80

29.7 ABOUT THIS PROGRAM

Bring up the About this program screen by clicking the GEAR icon in the program

entry in the List of programs (see highlighted). The About this program screen

lets you modify the name and description of a program, go straight to the edit

program screen, or delete the program.

Control When and how to use it

Name You can change the name of the program
here. Just enter a new name. The name is
automatically saved when the program is
saved.

Description You can change the description of the program
here. Just enter or modify the description. It
will be automatically saved. When the
program is saved.

Display the Edit Program dialog. From that
dialog you can edit and run the program.

Guide to Using Best Calculator Page | 81

Edit program
You cannot edit programs that come with Best
Calculator

Delete

Deletes the program. Once deleted, you will
not be able to bring the program back. You
will be prompted to confirm the delete.`

Programs that come with Best Calculator are locked and cannot be changed.

Their About screen is a little different.

Control When and how to use it

Copy to clipboard

Copies the source code for the program to the
clipboard.

Guide to Using Best Calculator Page | 82

29.8 EDIT PROGRAM

The Edit program dialog is where you enter your BC BASIC code.

Bring up the Edit program dialog by tapping the EDIT key on either the program

list or by tapping the EDIT () key in the About this program screen.

Control How and when to use it

Save

Saves your changes. Your changes are
automatically saved when you press RUN.
Your program is saved as part of the
package file; this is managed for you.

Run program

Runs the program from the start. Some
common errors when you press RUN but
your program does not appear to run are:

1. Your program might have a syntax
or other error that prevents it from
running. You will can tell because
the parse indicator will show an
error

Guide to Using Best Calculator Page | 83

2. You program might have run, but
didn’t display anything to the
screen. The output is often
displayed on the calculator display.
Press the Calculator key to see the
calculator screen.

Clear screen

Clears the output screen. If the output
screen is not visible, you won’t see a
change (but it will be cleared nonetheless)

Parse indicator

This indicates if you program compiles. BC
BASIC automatically compiles your program
as you type it, and tells you of any syntax
errors.

The editor uses syntax coloring on your
code; different parts of the code will be
displayed in different colors. When a
syntax error is discovered, only the program
up to the syntax error is colored; the rest
shows up in white.

There are two special keyboard keys while you are editing a program

Key How and when to use it

Escape Stops the program that’s currently running.
This is useful when you’ve written an
infinite loop (a program that doesn’t end)

F5 Acts like the Run program key. Press F5 to
start the program running.

Guide to Using Best Calculator Page | 84

29.9 OUTPUT SCREEN

The output screen is where the results of the PRINT, CONSOLE and DUMP

commands are written. It is the screen that’s cleared or whose color changes

when CLS or PAPER is run. You can only write to the screen; you can’t read back

from it.

The output screen contains both the fixed-character size screen (which is the

normal output screen) and the scrolling console output. The console output is

mostly intended for debugging.

The controls at the top of the screen let you modify the screen’s looks.

Control How and when to use it

Screen Size

The output screen always tells you how large the
screen is and the font size. Screen sizes include
12x20, 12x40, 16x60 and 24x80

Smaller font

Reduces the font size, automatically making the
output screen smaller.

Increases the font size, automatically making the
output screen larger

Guide to Using Best Calculator Page | 85

Larger font

Display/hide console

Toggles the console portion of the output screen
on and off. Unlike the output screen, the console
is a long scrolling list of output.

Fewer characters on
screen

Reduces the number of characters on the screen.

More characters on
screen

Increases the number of characters on the screen.

Close

Closes the screen. The screen contents are not
lost; when the screen is re-shown, the original
contents will still be present. When you PRINT to
the screen, it will be displayed automatically.

Guide to Using Best Calculator Page | 86

30 BASIC LANGUAGE REFERENCE

30.1 PROGRAM STRUCTURE
A BC BASIC program is a list of statements and functions. Each statement can

optionally start with a line number; line numbers are simple integers. Line

numbers do not have to be in any special order (this is unlike many version of

BASIC where the lines must be in numerical order).

Examples of statements

FOR I = 1 TO 4
PRINT “Hello World”
NEXT I
100 REM this statement has a line number

Statements are normally exactly one line. They can be extended with visible

“return” type characters:

↲ U+21B2 DOWNWARDS ARROW WITH TIP
LEFTWARDS

↵ U+21B5 DOWNWARDS ARROW WITH
CORNER LEFTWARDS

⤶ U+2936 ARROW POINTING DOWNWARDS
THEN CURVING LEFTWARDS

Statements do not have a statement terminator (for example, the “C” language

terminates statements with semicolons). Statements start with a command

name like PRINT except that the CALL and LET command names are optional.

Examples of statements include CLS BLUE and LET a=10. The CALL and LET

commands are optional; LET a=10 is the same as plain a=10, and CALL

PrintName() is the same as PrintName().

Lines are technically a sequence of characters that ends with a \n, \r or \v. The

\v (vertical tab) is sometimes used by Microsoft Word when cut-and-pasting

text.

Guide to Using Best Calculator Page | 87

30.2 FLAGS
BC BASIC lets you include flags (like 🚩 and 🎌) in your source code. Adding

flags let you mark different lines of your program, either for you to find again

later or to let other people review your code. The BC BASIC editor includes a

 button that lets you easily insert a variety of flags into your code.

Comments start with the REM command; the rest of the line is the comment.

The properties page for each package includes a 🎌 button; press it and each

line of each program in the package that includes a flag character will be

displayed.

30.3 NUMBERS AND STRINGS AND VARIABLES
Numbers and strings are the two most common things people want to

manipulate. Inside a BC BASIC program, you can write number constants (like, 4

or 3.14) and string constants (lie, “apple”).

30.3.1 Numbers

Number can be any of

• Integers like 3 or -5

• Integers using hexadecimal (base 16) notation like 0x65

• Floats (which are stored as double-precision) like 1.2, or -7.8

• Numbers in exponential notation like 45E3 (which is equal to 45000)

Doubles which are smaller than 1 can start with just a decimal place (0.3 and .3

are both OK). To help improve the look of your programs, BC BASIC allows for

either a computer-style minus or a wider Unicode minus and dash characters.

Guide to Using Best Calculator Page | 88

Example: computer-style is - and wider Unicode is – or –. Microsoft’s Word

program sometimes converts one into the other.

Example of using different types of minus signs:

REM Constant numbers
V1 = -12.34E-6
V2 = –12.34E–6
V3 = −12.34E−6

REM Expressions
E1 = V1 - V2
E2 = V1 – V2
E3 = V1 − V2

REM Negated Values
N1 = - E1
N2 = – E2
N3 = − E3

Technically, these are Unicode characters HYPHEN MINUS (U+2D), EN DASH

(U+2013) and MINUS SIGN (U+2013). The special Unicode plus signs are not

accepted or the other Unicode minus signs.

30.3.2 Strings

String constants can use either computer-style quotes like "" or “smart” quotes.

A string that starts with an opening smart must be ended with a smart end

quote. You can’t nest smart quotes: the string “hello “special” world” is

incorrect. The string will be ended at the end of the word special; the rest of

what you think is the string will be misinterpreted.

BC BASIC includes functions for manipulating strings. You can concatenate

strings together with the + operator, get the length of a string with the LEN

function, and extract parts of a string with the LEFT, MID and RIGHT functions.

30.3.3 Variables, GLOBAL, and DIM

BC BASIC allows you to create and use variables at any time. Variables are given

names; names must start with a letter (a to z and A to Z) and from then on can

contain letters, numbers, and underscores. Variables can optionally end with a

dollar sign ($). Variables are case sensitive; the variable “name” is different

from the variable “NAME”.

Guide to Using Best Calculator Page | 89

In BC BASIC the “$” at the end of a variable has no special meaning. The $ is

allowed for compatibility with other versions of BASIC. In some versions of

BASIC, a “$” indicates that a variable is a string. In BC BASIC, any variable can be

any kind of variable.

Variables created inside of functions are scoped to the function; they cannot be

used out of the function.

Use the DIM statement to make array variables. Array variables let you get and

set a lot of values in one variable. They are often used in mathematical analysis.

See documentation for DIM for full information on what you can do with arrays.

Use the GLOBAL statement in a function to use variable declared outside of the

function. Normally you can use the same variable name both globally and in a

function and they will refer to different variables. Sometimes in a function you

need to refer to a global variable (for example, this is common in callback

functions). In these cases, use GLOBAL variable . After that, references to the

variable will be to the global variable.

Example of using variables:

LET a = 10
LET b = a + 3
LET c = 7.89 / b
LET bignum = -1.3E23
LET smallnum = 2.78E-23

LET name = “Person of interest”
LET information$ = “You can use smart quotes”

LET dog_name = "Sumi"
LET check9 = 99

CLS GREEN
PRINT "Sample variables"
DUMP

Each variable includes some properties that tell you about the variable.

variable.Type says what the type of the variable is. Possible results are

NUMBER, STRING, ARRAY, OBJECT, ERROR, and NOTHING. Other objects (like

the different Bluetooth objects) may return other values.

Guide to Using Best Calculator Page | 90

variable.IsNumber, variable.IsString, variable.IsObject and

variable.IsError are true if the variable is a number, string, object or error

respectively.

variable.IsNaN is true if the variable is number which is a NaN (not a number)

value. If the number is a string or something that isn’t a number, will return

true. The Math extension also includes a Math.IsNaN function.

When variable.IsError is true, you can get the ErrorCode and ErrorString

properties from the error object. These can be used to decide how to handle

the error.

IF (value.IsErrror)
 PRINT value.ErrorCode
 PRINT value.ErrorString
END IF

30.4 <EXPRESSION> OVERVIEW

30.4.1 Quick introduction to expressions

“1 + 1” is one of the simplest expressions; it adds two constants (the two 1

values). Best Calculator BASIC has the normal set of operators and precedence

rules for modern computer languages, plus a few extra convenience functions.

30.4.2 Expression Rules

BC BASIC is designed to make most expressions work normally. 1+2*3, for

example, will multiple the 2*3 first, and then add the 1. You can put

parenthesis around your expressions. You can use either curved parenthesis or

square brackets.

Expression type Explanation and Sample

Variable When evaluated, is the value of the variable.
Examples:
A
B$

Constant A numeric or string constant
Examples:
1
3.14
0xFF
“Hello World”

Guide to Using Best Calculator Page | 91

“She said, "Hello"”

Named values PI and RND PI is always equal to PI (3.1415…). It’s more
common in BC BASIC to use the Math.PI value
and not PI by itself.
RND is a new random number between 0 and 1.

(expression)
[expression]

You can place expression inside of parenthesis
() or square braces [] to show which operations
should happen first.

expression OPERATOR
expression

Any of the standard math operators like + and -
. See the table below for a full list. BC BASIC
also includes a variety of comparison and
logical operators, and the INPUT operator.

PREFIX expression
expression POSTFIX

Use minus (-) to negate a number.
Use power and root operators to take a square
root, or raise a value to a power.

Function (argument,
argument)

The value of the given function. There are a set
of built-in functions (SGN ABS SIN COS TAN ASN
ACS ATN LN EXP SQR INT LEN CODE CHR$), or
you can define your own.
The parentheses are normally required. Unlick
some other versions of BASIC, you cannot omit
the parenthesis for the built-in functions.

Constants are always handled as doubles (1.2, or 0.1, or -56.7, or just plain 4 or -

2

Example of expressions are

Example Explanation

1 A constant

apple The value of the variable “apple”. The variable
should have already been defined; otherwise it’s
assumed to be a “NaN” (Not a Number)

SIN (PI / 4) The SIN of ¼ PI radians. The trigonometry
functions all take their values in radians. Use the
Math.DtoR() function to convert degrees to
radians.

1 + 2 * 3 Is the value 7 (and not 9); multiplication is higher
priority than addition so the 2*3 is done first and
then the 1 is added to it.

Guide to Using Best Calculator Page | 92

(1+2) * 3 Is the value 9; the parenthesis force the addition to
be done first

“A” < “B” Is the value 1 (for ‘TRUE’) because A is sorted
before B.

30.4.3 negate, power, root prefix and postfix operators

Operator Explanation and Sample

² ³ ⁴ Square, cube and fourth power operators. BC BASIC is
special among most programming languages for allowing
these superscripts to be used. You can also use the
Math.Pow() function or the ** operator

Example:
5² is 25 because 5*5 is 25
Math.Pow(5, 2) is also 25
5**2 is also 25

√ ∛ ∜ Square root, cube root and fourth root operators. You
can also use the Math.Pow () function or the ** operator

Example:
√64 is 8 because 8*8 is 64
Math.Pow(64, 1/2) is also 8
64**0.5 is also 8

- Unary minus converts any number to its negative

Example:
12 + -3 is 9 because 12 – 3 is 9

30.4.4 Operators + - * / and more

Each operator has a precedence value; operators with a higher precedence will

be done before operators with a lower precedence.

Operator Precedence Explanation and Sample

** 10 ** is the “raise to the power” operator

Example:
2 ** 6 is 64 because 2*2*2*2*2*2 is 64

Guide to Using Best Calculator Page | 93

Historical note: early versions of BC Basic
includes a “root finding” operator. This
proved to be confusing in practice, and has
been removed.

* / 9 * is the computer sign for multiply
/ is the standard computer sign for divide
Examples:
3 * 4 is 12
10 / 2 is 5

+ - 6 + is the standard computer sign for addition
or string concatenation
- is the standard computer sign for
subtraction

Example:
1+2 is 3
10 - 2 is 8
“1” + 2 is “12”, but 1 + “2” is 12. When the
left side of a + is a string, both sides are
treated as string and concatenated
together; when the left side is a number,
both sides are treated as numbers. Strings
that cannot be converted are handled as a
NaN

Extra bonus: The Unicode character set
designates three characters that are
commonly used for minus signs:

HYPHEN-MINUS (U+2D), the normal
minus sign
MINUS SIGN (U+2212)
EN DASH (U+2013)

Any of these can be used for a minus sign.
Among other things, this makes it easier to
copy your programs back and forth
between BC BASIC and Microsoft Word.

< <= = >= >
<> ≅

5 The normal set of operators for less than,
less-than-or-equal, and so on. The <>
operator is for “not equals”.

Guide to Using Best Calculator Page | 94

The ≅ is for “approximately equals”; for
numbers it means that the two numbers
are within 5 significant figures of each
others, and for strings that they compare
equal using the CurrentCultureIgnoreCase
flag.
Note that two numbers which are different
signs are never considered approximately
equal even if they are both really, really
close to zero.

NOT 4 Inverts the logical value of its argument.

Example
IF NOT A=B THEN <statement> will do the
statement if A is NOT equal to B.

Note on logical values:
The logical operators (NOT, AND, and OR)
can take any numerical value and treat it as
a logical value; anything that’s zero is
treated as FALSE and all other numeric
values are TRUE. The operators will only
ever produce a 0 or 1.

AND 3 A logical AND operation; A AND B will be 1
if both A and B are TRUE (non-zero).

OR 2 A logical OR operation. A OR B will be 1 if
either A or B are TRUE (or if both of them
are).

INPUT

 INPUT is a complex operator with two
optional values, a PROMPT and a DEFAULT
value. When your program runs, a dialog
box will pop up with the prompt you
specific and with a starting value of
whatever the default value was (it can be
an expression). The user then enters a
value and presses the OK key; the resulting
value is the value of the INPUT expression.

Example:

Guide to Using Best Calculator Page | 95

birth_year = INPUT DEFAULT 1967 PROMPT
“Enter your birth year: ”

Examples of expressions:

REM Multiplication binds more than addition
REM a will be 7 (1 + (2*3)) and not 9 ((1+2) * 3)
a = 1 + 2 * 3
b = 10 - 4 / 2

REM Demonstrate cube root and raise to 4th power
c = 3 √ 10
d = 6 ** 4

REM Comparing values. PI is not about 22/7
REM but it is about 355/113
e = PI ≅ 22/7
f = PI ≅ 355/113

REM These are all false (except j)
g =PI > 22.7
h = PI >= 22.7
i = PI = 22.7
j = PI <> 22.7

REM Logical operators
k = c >2 AND c < 4
l = c > 2 OR d < 10
m = NOT (c > 2 OR d < 10)

REM You can ask for input from the user
n = INPUT DEFAULT 5 PROMPT ↲

"Please enter a number"

CLS BLUE
PRINT "All the variables"
DUMP

Example of using the RND and PAUSE statement to make a little random

animated display:

CLS BLUE
COUNT = 0

Guide to Using Best Calculator Page | 96

REM You can also use a FOR..NEXT loop
10 A = DrawDot()
COUNT = COUNT + 1
IF (COUNT > 100) THEN GOTO 20
PAUSE 1
GOTO 10
20 PRINT AT 1,1 "DONE"

FUNCTION DrawDot()
col = INT (RND * Screen.W) + 1
row = INT (RND * Screen.H) + 1
ch = “*”
PRINT AT row,col ch
RETURN

30.4.5 The INPUT expression

The INPUT expression lets you prompt your user to enter a value. You can use

DEFAULT <value> to supply a default value and a PROMPT <string> to specify a

prompt string. You must specify the DEFAULT before the PROMPT.

If the DEFAULT value is a string, the user will be allowed to enter either a

number or a string. Otherwise, the user may only enter a number. The original

version of BCBASIC only allowed for numeric entry.

There is also an INPUT statement that is less powerful than the INPUT

expression. It’s provided for compatibility with other versions of BASIC.

Example of the INPUT expression:

LET interest = INPUT DEFAULT 3.5 ↲
 PROMPT “Interest rate”

The user will enter a value which will be interpreted as a number.

30.5 MATH FUNCTIONS
BC BASIC includes a small but powerful set of math functions. These are

designed to be compatible with other versions of BASIC.

Some version of BASIC let you use these functions without parenthesis; BC

BASIC does not.

Guide to Using Best Calculator Page | 97

There are even more functions available in the Math extension.

30.5.1 Trigonometry functions SIN COS TAN ASN ACS ATN

Function Notes

ACS(value) Calculates the inverse of COS; given a value
will compute the corresponding angle in
radians.

ASN(value) Calculates the inverse of SIN; given a value
will compute the corresponding angle in
radians.

ATN(value) Calculates the inverse of TAN; given a value
will compute the corresponding angle in
radians. Note that TAN of 90° is infinite.

COS (radians) Calculates the cosine of an angle given in
radians

SIN (radians) Calculates the sin of an angle given in radians

TAN (radians) Calculates the tangent of an angle given
radians

30.5.2 Logarithm and Power functions LN EXP SQR

Function Notes

EXP (value) Calculates the value evalue for any given
value. This is the inverse of the LN function
This is the same as Math.Exp(value)

LN (value) Calculates the natural (base e) logarithm of
the given value. This is the inverse of LN.
This is the same as Math.Log(value)

SQR (value) Calculates the square root of a value.
You can also use the √ square root
operator, or use the ** power operator.
This is the same as Math.Sqrt(value).

30.5.3 Rounding and sign functions SGN ABS INT

Function Notes

ABS (value) Calculate the absolute value of a number.
This is the same as Math.Abs(value)

INT (value) Calculates the floor of a number. The floor is
the number rounded down to the nearest

Guide to Using Best Calculator Page | 98

integer. For example, INT (12.8) is 12 and
INT (-12.8) is -13.
This is the same as Math.Floor (value)

SGN (value) Return the sign of a number. The sign is 1
for positive values, -1 for negative values,
and 0 for zero.
This is the same as Math.Sign(value)

30.6 STRING FUNCTIONS (LEFT, MID, RIGHT, LEN, CHR$, CODE, VAL)

30.6.1 LEFT (string, count)., MID (string, index, count) and RIGHT (string, count)

The LEFT, MID and RIGHT functions get data from the start (LEFT), middle (MID)

or end (RIGHT) ends of a string. The return value is always a string.

For the MID function, you don’t need to provide the count value; it will be

assumed to be 1. The index for the MID function starts at 1; MID (string, 1,

count) is exactly the same as LEFT (string, count).

Examples of the string functions:

REM LEFT(string, count) returns string 'count' long
REM from the left part of the input string
REM The example will print AB
PRINT “LEFT("ABCDE", 2) = ”; LEFT("ABCDE", 2)

REM MID(string, index, count) returns
REM a string 'count' long
REM from the middle part of the input string
REM starting at 'index'. The first letter is index 1.
REM The example will print BCD
PRINT “MID("ABCDE", 2, 3) = ”; MID("ABCDE", 2, 3)

REM RIGHT(string, count) returns
REM a string 'count' long
REM from the right part of the input string
REM The example will print DE
PRINT “RIGHT("ABCDE", 2) = ”; RIGHT("ABCDE", 2)

Each of the functions has similar special cases.

Guide to Using Best Calculator Page | 99

1. The count is always truncated so that the return value doesn’t go past

the size of the string

2. If the count value is less than one, then a blank (zero length) string is

returned

3. If the index for MID is more than the length of the string, then a blank

string is returned

30.6.2 LEN string

The LEN function (which has optional parenthesis) returns the length of a string.

Blank strings have a length of zero.

Examples of the LEN function:

REM The length is always 3
PRINT “LEN of string ABC is 3”
PRINT LEN “ABC”
PRINT LEN (“ABC”)

REM Length of a blank string is zero
PRINT LEN “”

REM LEN PI is the length of the string
REM representing the number PI
REM (the answer is 16 printed digits)
PRINT LEN Math.PI

Special cases include:

1. When given a number, returns the length of the string that represents

the number

2. Blank strings have zero length

3. Unicode strings that use surrogate pairs will count each surrogate pair

as two characters. For example, the Unicode U+1F60B character point

(FACE SAVORING DELICIOUS FOOD) is presented as two characters,

U+D83D and U+DE0B. These two characters are called a surrogate pair,

and represent the Unicode character.

30.6.3 CHR, CODE

CHR converts a series of numerical Unicode values into a string. There is also,

for compatibility, a CHR$() that takes a single argument. The CHR$ function is

Guide to Using Best Calculator Page | 100

technically an expression operator and does not require parenthesis. That is,

CHR$ (65) can be written as CHR$ 65.

The CODE function returns the Unicode code point of the first character in a

string. The CODE function is technically an expression operator and does not

require parenthesis. That is, CODE (“A”) can be written as CODE “A”.

In Windows, Unicode code points outside the Basic Multilingual Plane are

encoded as surrogate pairs and are handled as two characters.

Example of the CHR, CHR$ and CODE functions:

REM CHR converts a Unicode character number
REM to a string
REM 65 is the ASCII A
REM Unicode U+1F60B is
REM "FACE SAVOURING DELICIOUS FOOD".
REM It is converted into two chars
REM (a surrogate pair).
REM CHR$ is the same function, but takes in
REM only one parameter
PRINT “CHR (65) = ”; CHR (65)
PRINT "CHR Unicode: "; ↲

CHR(65, 66, 0x1F60B, 67, 68)

REM CODE converts the first character of
REM a string to a code
PRINT “CODE "ABC" = ”; CODE "ABC"

30.6.4 VAL(string)

The VAL function evaluates the string as a BC BASIC expression and return the

value. For example, VAL(“1 + 2”) will return 3. The expression can use variables

that you have set.

Note that VAL can be slow.

Example of the VAL function:

REM VAL will evaluate an expression
a = 1
b = 2
PRINT “VAL ("a + b") = ”; VAL ("a + b")

Guide to Using Best Calculator Page | 101

30.7 <STATEMENT> OVERVIEW
Statements are the building blocks of a BC BASIC program. They let you perform

calculations, assign variables, loop until a condition is true, define functions and

more.

Examples of statements:

10 CLS
A = 3
B = 4
20 C = A + B
PRINT “C is ”; C

BC BASIC does not allow for multiple statements on a single line.

Statements can include an optional line number. They are the targets for GOTO

and GOSUB statements. They do not need to be in any particular order. Other

versions of BASIC always require line numbers and automatically order all lines

by line number. BC BASIC instead lets you use any line numbers you want in any

order.

Good line number practices:

1. Only number a statement when you have to.

2. Keep your line numbers in numerical order

3. Make your line numbers divisible by 10 or 100; that way you can add

new line numbers in between existing values.

Line numbers in a function are scoped to that function; two functions can use

each other’s line number. You cannot GOTO or GOSUB into or out of a function.

Statements are separated by new-lines; a newline is one or more of carriage-

return, new-line, or vertical-tab. (Pressing ALT-newline in Word can separate

lines with vertical tabs). You can continue a statement from one line to another

by placing a visible enter symbol (↲, U+21B2) at the end of the line where white

space would fit.

Guide to Using Best Calculator Page | 102

30.8 PACKAGES AND PROGRAMS
The BC BASIC Package and Program concepts are special to the BC BASIC

environment.

If you’re just getting started, you should feel free to just place the programs you

write into the single package that you made when you wrote your first program.

You don’t even need to rename it; you can continue to use the New Package

name.

But if you are going to write more than a few programs, you should spend a few

minutes understanding the BC BASIC Package and Program concepts. These are

explained more fully later on.

The BC BASIC environment tracks your programs for you. You do not have to

deal with their file names or try to remember where the packages are or what

programs they have. When you make a new package, the BC BASIC

environment makes a file for you in the app roaming directory, and picks the

name for you with a file extension of .bcbasic. Best Calculator will automatically

read in all of the packages you’ve created (and they roam, too, so you can make

You can run each
program separately

Each package
has multiple

programs

The library contains
all your packages

Library

Package 1

Program 1

Program 2

Package 2

Program 1

Program 2

Package ...

another program

yet another
program

Package n

Guide to Using Best Calculator Page | 103

or edit a package on one computer and it will be automatically sent to your

other computers).

30.8.1 Inside a package file

There is one file per package (and therefore multiple programs are placed into a

single file). When Best Calculator starts, it reads in all the .bcbasic files both in

the BC BASIC directory (these are the samples shipped with Best Calculator) and

all the .bcbasic files in the app data directory (these are your packages).

30.9 PICKING A PACKAGE FOR YOUR PROGRAM
When you make a new program, you should add it to a package where it will

logically fit. For your first few package, that will probably be the “New Package”

that you created. You will often find that you make a number of programs that

you will be using together. For example, you’ve made one program that

converts square feet to acres. The reverse program (acres to square feet) would

naturally fit into the same package.

30.9.1 Creating common functions for several programs

The programs in a package are normally independent of each other. They don’t

share variables or functions, and you can GOTO or GOSUB from one to the

other. There are exceptions to this general rule. The IMPORT statement can

read in the functions of another program in the same package. This lets you

make a “library” of functions that many programs can use.

30.9.2 Exporting packages

You can export (write) packages out to a file and then later import (read) the

files back in. When you export, you create a JSON file that lists all the programs

along with their names and descriptions and BC BASIC code. The export and

import mechanisms mean that you can share code with your colleagues,

coworkers, fellow students, or friends. You might even find useful packages on

the internet. Be careful though: although a BC BASIC program cannot damage

your computer, it’s possible for one package to delete your memory variables

and conceptually possible to use up excessive disk space.

Guide to Using Best Calculator Page | 104

30.10 ALL OF THE SPECIAL SYMBOLS
Best Calculator supports a number of special symbols both to help create good-

looking program and so that your programs can be copy and pasted into word

processors like Microsoft Word.

Symbol Name How it’s used

√ Square Root U+221A C = √ (A² + B²)

∛ Cube Root U+221B X = ∛Y

∜ Fourth Root U+221C W = ∜ (X+Y)

² Superscript 2 U+B2 C=X²

³ Superscript 3 U+B3 C=X³

⁴ Superscript 4 U+2074 C=X⁴
- Hypen-Minus U+2D The minus sign on a keyboard
− Minus Sign U+2212 Alternate minus sign
– En dash U+2013 Alternate minus sign
≅ Approximately equal to

 U+2245
Helpful to compare floating point
numbers.

“ ” Left and right double
quotation marks
 U+201C and U+201D

Smart Quotes

\v Line Tabulation U+B Can be used just like a normal
carriage return (or Enter, Return
or Line feed). Word sometimes
converts those into a line
tabulation

↲

Downwards arrow with
tip leftwards U+21B2

Line continuation: use at the end
of a line to continue onto the next
line.

↲ Downwards arrow with
corner leftwards
 U+21B5

Line continuation

⤶ Arrow pointing
downwards then curving
leftwards U+2936

Line continuation

Guide to Using Best Calculator Page | 105

31 BASIC STATEMENTS REFERENCE

In the descriptions of statements

- Words in <angle brackets> describe what to add.

- Words in square brackets are optional

- The punctuation ,… means the previous item can be part of a list

separated by comma. The list can include no items at all.

- The punctuation … means a series of statements on new lines

- Otherwise, the items are to be entered as they appear

For example, the CALL statement is described as [CALL] <function>

(<expression>, …).

The word CALL is optional; you can include it or not as you please.

The <function> means you have to enter the name of a function

() are parenthesis; they are required

<expression> is an expression (they are explained in an earlier section)

The following are valid statements

CALL myfunction ()
CALL myfunction (1)
CALL myfunction (1+2)
CALL myfunction (1, 2)
myfunction ()

31.1 [CALL] <FUNCTION> (<EXPRESSION>, …)
Calls the function by name, passing in the given parameters. The word CALL is

optional, but the parentheses are required.

Example of using CALL and defining a FUNCTION:

CALL Hello(“Mom”)
Hello(“Dad”)

FUNCTION Hello (name)
PRINT “Hello ”;name
RETURN

Guide to Using Best Calculator Page | 106

The example will print Hello Mom and Hello Dad.

31.2 CLS [<COLOR>, <COLOR>] AND PAPER <COLOR>
CLS will clear the scrolling console and screen and potentially change the screen

color. PAPER will change the screen color without clearing the screen. CLS also

lets you set the foreground text color.

Normally after you press ‘Run’ the scrolling console will have the results of

previous runs and will also have the results of evaluating your program. You can

change the background color of the screen by specifying either a color name or

a color index from the table below.

Pick the color for CLS and PAPER with either a color number (0 to 7) or a color

name. In addition, color NONE can be used for transparent colors when making

graphs using the Screen.Graphics() extension.

Color
Number

Color
Name

0 BLACK

1 BLUE

2 RED

3 MAGENTA

4 GREEN

5 CYAN

6 YELLOW

7 WHITE

Example of using CLS to clear the screen:

CLS BLUE

This example is like a color stroboscope:

REM The screen only shows up if you PRINT
REM something to it.
REM PAUSE delay is in "frames"; there are
REM 50 frames per second.

Guide to Using Best Calculator Page | 107

PRINT " "
delay = 25
FOR i=1 TO 3
FOR color = 0 TO 7
CLS color
PAUSE delay
NEXT color

REM You can specify colors with names
CLS BLACK
PAUSE delay
CLS BLUE
PAUSE delay
CLS RED
PAUSE delay
CLS MAGENTA
PAUSE delay
CLS GREEN
PAUSE delay
CLS CYAN
PAUSE delay
CLS YELLOW
PAUSE delay
CLS WHITE
PAUSE delay
NEXT i
CLS BLACK

Spring 2017 update: you can set the foreground color of CLS.

31.3 CONSOLE <EXPRESSION> [, <EXPRESSION>]
Writes the expressions out to the scrolling console. Any number of expressions

can be given (including none)

Example of writing to the console:

CLS BLUE
ANGLE = 45
RADIANS = Math.DtoR (ANGLE)

REM PRINT to the screen to see the console.
PRINT " "
CONSOLE "SIN(45 degrees)", SIN(RADIANS)

Guide to Using Best Calculator Page | 108

The CONSOLE command prints out about 0.707. You might need to tap the

console key () to see the console. See ‘Graphics and Best Calculator BASIC’

for a description of the console screen.

31.4 DIM <NAME> ([SIZE]) AND ARRAY METHODS
Creates an array variable. Use array variables when you need to store a set of

values and then index them. You will often use arrays when you do data

analysis.

Arrays have several useful methods and properties like the Count property.

These are described in the next section.

Example

DIM a()
a(1) = “First”
a(2) = “2.2”
PRINT a(1)
PRINT a(2)

You can find out the length of an array using the Count value.

FOR i = 1 to a.Count
 PRINT a(i)
NEXT i

You can also specify the size of the array in the DIM statement

REM Make an array that’s exactly 10 items long
DIM a(10)
a(8) = 8.8

REM Nope! You can’t add an element beyond 10.
a(20) = 20.20

Guide to Using Best Calculator Page | 109

The array also has a helper method array.AddRow(item1, item2, …) that helps

you make two-dimensional tables. These are often used when dealing with

JSON data. You can call AddRow with any number of arguments. It will create a

new array that contains all of the arguments and then will add the new array to

the end of the array you called the method on.

Here’s a real-world example showing how calculate the average of a list of

number. The DIM statement isn’t given a specific value, so the array can hold

any number of elements.

CLS BLUE
DIM a()
REM Use DIM a(3) if you know the array will always
REM be 3 elements long. In that case, all three
REM elements will be initialized to NaN.
a(1) = 10
a(2) = 20
a(3) = 90

average = Average(a)
PRINT "Average is ";average
REM The average of 10, 20, 90 is 40

FUNCTION Average (data)
 sum = 0
 FOR i=1 TO data.Count
 sum = sum + data(i)
 NEXT i
RETURN sum/data.Count

Example of adding a new value to the end of an array. In the example, an array

called a is created. Two values are added to the end of the array.

DIM a()
a(a.Count+1) = “First new value”
a(a.Count+1) = “Second new value”

Example of creating a two-dimensional array that’s an array of name/value pairs

and then convert it to JSON

DIM list()
list.AddRow (“data”, 82)
list.AddRow (“sensor”, “Metawear”)

Guide to Using Best Calculator Page | 110

json = String.Escape (“json”, list)
print json

31.5 DIM’D ARRAY METHODS AND PROPERTIES
When you DIM data(), you are making an array. These arrays have a number of

useful properties and methods

31.5.1 Count property

The Count property tells you how many items are currently stored in an array

31.5.2 Max and Min properties

The Max and Min properties tell you the largest and smallest value in an array

31.5.3 MaxOf(column) and MinOf(column) properties

The MaxOf(column) and MinOf(column) methods tell you the largest and

smallest value for a particular column of data in an array.

31.5.4 Add() method and MaxCount and RemoveAlgorithm properties

These properties and the method help create fixed sized summaries of data.

You will add data to the array by calling the array.Add(data) method. If the data

hasn’t reached the MaxCount amount, the data is simply added to the end of

the array. Otherwise, the array is full. The RemoveAlgorithm determines what

happens next.

If RemoveAlgorithm is set to “First”, the first array element is removed to make

room and the latest data is added to the end.

If RemoveAlgorithm is set to “Random”, a statistically chosen value (using

Reservoir sampling) is possibly removed from the array to make room and, if a

value was removed, the new data is added to the end. The data is removed in a

way that every data point ever Add()’d to the array has the same chance of

being in the array.

Here’s a snippet from the “Hiking with an Altimeter” sample

DIM fullData()
fullData.MaxCount = 200
fullData.RemoveAlgorithm = "Random"

https://en.wikipedia.org/wiki/Reservoir_sampling

Guide to Using Best Calculator Page | 111

In this snippet, the fullData array is first created with the DIM statement. Then

the fullData.MaxCount value is set to 200 so that only 200 data points are saved.

Then the fullData.RemoveAlgorithm is set to “Random” so that the array will

always be a reasonable summary of the overall data.

31.5.5 AddRow() method

The AddRow(data1, data2, data3, …) method is a quick way to create a new

array and add it to the end of an existing array. This will make an array-of-

arrays.

The AddRow methods is commonly used when you’re creating JSON or CSV data

files.

31.6 DUMP
Prints all the variables to the scrolling console. This is a common mechanism to

see what your program is doing. DUMP will also print out all of the memory

values.

Example of using DUMP:

CLS BLUE
ANGLE = 45
RADIANS = Math.DtoR (ANGLE)

REM PRINT to the screen to see the console.
PRINT " "
CONSOLE "SIN(45 degrees)", SIN(RADIANS)

CONSOLE "DUMP all the variables"
DUMP

The variables are then printed to the scrolling console.

Guide to Using Best Calculator Page | 112

You might need to press the console key () to see the console.

31.7 FOR <VARIABLE> = <START> TO <END> [STEP <STEP>] … NEXT

<VARIABLE>
Use the FOR and NEXT statements to form loops. The variable is the name of

the loop variable; it will start at the <start> value. Each time through the loop, it

will be incremented by the <step> amount (the default is 1) until it’s more than

the <end> amount. The start, end and step values are all expressions.

If the <step> value is negative, then the loop is changed slightly. The variable

starts at the start value, is decremented by the <step> value, and the loop ends

when the variable is less than, not greater than the <end> value.

The end of the loop is the NEXT <variable> statement; the variable is the exact

same as in the FOR statement. For example FOR i=1 TO 10 is ended at a

later NEXT I statement.

Guide to Using Best Calculator Page | 113

Common errors:

1. Never GOTO or GOSUB into the middle of a FOR … NEXT loop, and never

jump out.

2. FOR … NEXT loops can be nested inside each other, but always nest

them correctly. The first FOR must match the last NEXT

3. You can reuse a variable name in several loops, but not nested.

4. You should not modify the variable inside the loop.

5. You will always go through the loop at least once

Example of a simple FOR loop:

PRINT “Value”, “Squared”
FOR I=1 TO 10
PRINT I, I**2
NEXT I

The example prints a table of numbers and their squares.

Guide to Using Best Calculator Page | 114

Example of going backwards through a loop:

PRINT “Value”, “Squared”
FOR I=10 TO 1 STEP -1
PRINT I, I**2
NEXT I

To go backwards, you have to specify a negative STEP value and TO value that’s

less than the starting value. In the example, the STEP value is -1, and the TO

value (1) is less than the start value (10).

Example of a nested FOR loop:

CLS GREEN
PRINT “Value **2 **3 **4 **5”
FOR N=1 TO 10
PRINT AT N+2,1 N
FOR POWER = 2 TO 5
PRINT AT N+2, (POWER-1)*8 N**POWER
NEXT POWER
NEXT N

This function prints a table of numbers; each number is printed along with the

number raised to a power of 2, 3, 4 and 5.

Guide to Using Best Calculator Page | 115

31.8 FUNCTION <NAME> (<ARGS>) … RETURN [<VALUE>]
Creates a function with the given name (expressions are not allowed), taking the

arguments. A single value can be returned.

When you CALL a function, you pass in data; that data is then given the names

in the function. The names in the argument list are only valid in the function.

It’s considered a best practice to have a single RETURN in a function; it’s easier

to understand a function that has only a single return point. However, it’s also

sometimes easier to RETURN early.

Example of using FUNCTION to print to the screen:

CALL Hello(“Mom”)
Hello(“Dad”)

FUNCTION Hello (name)
PRINT “Hello ”;name
RETURN

In the example, the function HELLO will print whatever value is passed in. It’s

called twice, and therefore the program will print out two messages: Hello

Mom and Hello Dad.

31.9 GLOBAL <VARIABLE>
The GLOBAL statement lets you to use global variables from within a function

without having to pass the variable in as a parameter. For example, the callback

functions used when a Bluetooth device has a changed characteristic value have

no way to pass arbitrary data in and might need access to variables declared at

the global level.

To use a global variable, use the GLOBAL <variable name> command inside your

function.

Example

LET message = “This is a variable at the global scope”
CALL PrintMessage ()
STOP

Guide to Using Best Calculator Page | 116

FUNCTION PrintMessage()
 GLOBAL message
 PRINT message
END

31.10 GOSUB <LINENUMBER> AND RETURN
Tip: you should almost always use a function instead of using GOSUB. Many

earlier versions of BASIC (including Sinclair BASIC and MSW BASIC) used GOSUB

instead of FUNCTIONs.

GOTO and GOSUB both jump to the line number indicated. GOSUB remembers

where you jumped from. When the program encounters a RETURN statement,

the program will continue at the line after the GOSUB line. You can nest a

GOSUB inside a GOSUB routine.

It’s considered good practice that each block of code that you will GOSUB to has

a single entry point and usually will have just the one RETURN. Otherwise, your

code will get very complex.

Example of using GOSUB:

REM Calculate the hypotenuse of a triangle
A = 3
B = 4
GOSUB 100
PRINT “”
DUMP
STOP

100 REM Calculate the hypotenuse from A and B
C=2 √ (A**2 + B**2)
RETURN

31.11 GOTO <LINENUMBER>
Jumps to the line number indicated. Unlike GOSUB, you can’t RETURN from a

GOTO.

GOTO is often considered harmful.

Guide to Using Best Calculator Page | 117

In BC BASIC, the primary values of a GOTO is compatibility with earlier versions

of BASIC and to help “extend” the statements in an IF statement. BC BASIC IF

statements can only conditionally run a single statement after the THEN, and do

not have ELSE clauses.

31.12 IF (<EXPRESSION>) THEN <STATEMENT> [ELSE <STATEMENT>]
If the expression is TRUE (not zero), then the statement will be run; otherwise it

will not be. Often the statement will be a GOTO or GOSUB. The expression

often uses the comparison operators (< <> > plus AND OR and NOT).

Example of an IF statement:

a = 15
IF a > 12 THEN PRINT "A is more than a dozen"

In this example, the variable ‘a’ is set to the value 15. The PRINT part of the IF

statement will only be executed if the variable a is greater than 12. Since 15 is

more than 12, the PRINT statement is executed, and “A is more than a dozen” is

printed.

The statement after the ELSE is optional; it will be run if the expression is false.

IF (x >= 1) THEN PRINT "Single line: x >= 1" ↲
ELSE PRINT "Else: x NOT >=1"

31.13 IF (<EXPRESSION>) … [ELSE …] ENDIF
The IF … ENDIF statement is very similar to the IF statement but it lets you

include multiple IF statements in a block instead of just one. It also lets you add

statements in an ELSE clause. The statements in the ELSE clause will only be run

if the expression is false.

IF (x < 1)
 PRINT "Multi-line IF statement (expression is true)"
 PRINT "x<1"
ELSE
 PRINT "Multi-line IF statement (expression is false)"

Guide to Using Best Calculator Page | 118

 PRINT "NOT x<1"
END IF

Not all statements can be placed inside of the statement blocks. Notably, you

can’t use GOTO statements.

31.14 IMPORT FUNCTIONS FROM “PROGRAM”
The IMPORT statement will read in all of the functions from a specified program

in the same package. This lets you make a package with a common set of

functions that all the programs in the package can use. This is useful when

several programs in one package all need to perform the same calculation.

The STATISTICS samples do this. There’s a program called “Sample Size Library”

that consists of a set of useful statistical functions (MarginOfError, SampleSize,

GetZ, and more). The programs that you might bind onto a key then just

IMPORT the functions from that program and can call them.

Technical details: as needed, the library program is compiled and the functions

remembered. When the IMPORT FUNCTIONS FROM “program” is run, the

functions are imported by name. All functions are imported automatically. You

can’t pick just one or two functions from a program.

You always IMPORT a program from the same package. You cannot IMPORT

FUNCTIONS from a different package. You can IMPORT as many programs as

you like; newer imported functions will override older ones. Deliberately doing

this is not a best practice.

Example of the IMPORT statement:

IMPORT FUNCTIONS FROM "Conversion Library"

The example is taken directly from the AU to Meters program in the Astronomy

library. As soon as it’s run, the program can call any function from the

“Conversion Library” program.

Guide to Using Best Calculator Page | 119

31.15 INPUT <VARIABLE>
Note: the expression <variable> = INPUT DEFAULT <value> PROMPT <prompt> is

a more flexible and powerful way to read in data. The INPUT statement is

included to improve compatibility with other versions of BASIC.

The INPUT statement asks the user to enter a value. If the variable name ends

with a $ (dollar sign) the user may enter non-numeric values and the value will

be a string value. Otherwise, the user can only enter a number.

Example of the INPUT statement:

REM The a=INPUT expression has more power
REM than INPUT statement. The expression version
REM lets you specify a prompt and a default.

REM The INPUT statement has no default value
REM and no prompt.
INPUT taxrate

REM The INPUT expression has box a default
REM and a prompt. The user has an easier time
REM remembering what to enter.
income = INPUT DEFAULT 40000 ↲

PROMPT “Enter your income for the year”

PRINT "Owe="; taxrate*income
IF (taxrate*income > 100) THEN ↲

PRINT “You owe more than 100”

31.16 (LET) <VARIABLE> = <EXPRESSION>
LET is the assignment statement. It sets (assigns) the value of the expression to

a variable. The variable might or might not already exist. If the variable didn’t

already exist, it will be created. If it did exist, the old value is discarded and

overwritten with the new value. Some languages call this an assignment

statement.

Variables start with a letter, and then can be any combination of letters, digits,

and underscores. Variables are case sensitive; myage is different from MYAGE

and is different from myAge. Expression can include requests for user input.

Guide to Using Best Calculator Page | 120

The word LET is optional in BC BASIC. You will find that it is required in many

other variants of BASIC.

Examples of the LET statement:

LET year = 2015
birth_year = INPUT DEFAULT year - 15 ↲

PROMPT “When were you born?”
age = year - birth_year
PRINT “”
DUMP

There are 3 LET statements in the example. The first uses the LET word (LET year

= 2015). The other two leave off the LET word. When the INPUT expression is

run, BC BASIC will pop up a dialog for the user to enter a value.

31.17 PAUSE <FRAMES>
Pauses the screen. This is useful when animating the screen. A value of 1 is one

“frame”; there are about 60 frames per second. The value is not exact.

You can see an example of the PAUSE being used in the Colorful Countdown

sample in the Quick Samples package.

Guide to Using Best Calculator Page | 121

31.18 PRINT [AT ROW,COL] <EXPRESSION> [(, OR ;) [AT ROW,COL]

<EXPRESSION]*
The PRINT command will print one or more expressions to the output screen.

BC BASIC remembers where the last thing was printed, and prints the next thing

on the next line.

PRINT expression prints an expression (either a number of a string) onto the

next line of the screen. This is the most common use of the PRINT command. If

the screen is already full, nothing happens. The screen won’t clear or scroll to

make room for the new text.

PRINT expression; expression to print two values next to each other

PRINT expression, expression to print values in columns

PRINT AT [row, col] for exact placement. You can print each expression at a

particular point on the screen with the AT row, col syntax. The rows and column

values start with 1,1 at the upper-left corner of the screen. You can tell how

large the screen is with the Screen.H and Screen.W values.

Simplest example of PRINT:

PRINT “Hello, World”

Example of PRINT with an AT:

PRINT AT 1,1 “HELLO”; AT 2,4 “WORLD”

Example of doing a PRINT with multiple expressions and commas:

PRINT “HELLO”, “WORLD”

Note that there’s a big gap between the “HELLO” and the “WORLD”. The

comma means to print at the next tab stop; those are each 16 characters apart.

Example of doing a PRINT with multiple expressions and semicolons:

PRINT “HELLO”; “WORLD”

Guide to Using Best Calculator Page | 122

With semicolons the two words are printed right next to each other without

even a single space between them.

Spring 2017 update: the string to be printed can now contain any combination

of embedded \r and \n characters. A \r\n is considered to be a single “newline”

request, as are individual \r and \n characters. Strings from the Http.Get

method often have these embedded characters.

31.19 RAND <SEED> & THE RND VALUE
The RND value (like PI) acts like a variable in expressions; unlike PI (which is

always the same value), RND will provide a stream of different random numbers

between the values 0.0 and 1.0.

Example of using RND:

REM Print some random numbers
PRINT RND, RND, RND, RND

This prints numbers like so:

Technical details

BC BASIC provides access to a single pseudo-random number generator; the

stream of values is determined entirely the value of the initial seed value. All

expressions in all functions are connected to the same stream of random

numbers. The RAND statement will re-seed the random number generator. The

Guide to Using Best Calculator Page | 123

seed value 0.0 is special; it will re-seed the generator with a time-dependant

value. All other seed values simply reset the seed.

Tip: the random number generator is not suitable for any cryptographic or

security uses.

31.20 REM COMMENT WORDS TO THE END OF THE LINE
The REM (remark) statement lets you put comments into your code. The words

after the REM, and up to the carriage return, are entirely ignored by the

program,

Example of a REM comment statement:

REM Calculate the hypotenuse given A and B
C=2 √ (A**2 + B**2)

The REM statement will help you understand what your program does. The

common practice is to explain the why of a program, not the how. It’s also

common to comment on unusual or clever mathematical techniques. For

example, some of the programs in the Real Estate section specifically refer to

the exact regulations that are being implemented; this helps later on when you

need to verify that the program is implemented in accordance with the laws.

31.21 STOP AND END
The STOP statement halts execution of the program. If rerun, the program will

start from the very beginning again. It’s common practice for programs to have

their main logic at the start, and a number of subroutines (called by using

GOSUB) at the end. A STOP statement is placed after the main logic, and before

the subroutines.

Example of using STOP to return a value to the calculator:

IMPORT FUNCTIONS FROM "Conversion Library"

from = Calculator.Value
m = ConvertToMeters(from, "au")
Calculator.Message = "Convert " + from ↲

+ " au into " + m + " meters"
STOP m

Guide to Using Best Calculator Page | 124

When the example is done, it returns the “m” value to the calculator. The

calculator then prints the value into the display. The example is from the Space

and Astronomy built-in package. It will not just work if you type it into a new

program. To work, it requires that you have a program “Conversion Library” in

your package.

END is permitted as a synonym for STOP. It is added for compatibility with

other version of BASIC including the first Dartmouth BASIC program (see the

historical note).

Guide to Using Best Calculator Page | 125

32 EXTENSIONS REFERENCE

BC BASIC includes extensions to the core BASIC language. The extensions let

you

• Set and get values from the calculator screen

• Perform advanced math

• Set and get memory values that persist from one session to another and

roam to your other computers

• Get information about the screen

32.1 CALCULATOR.VALUE AND CALCULATOR.MESSAGE EXTENSION
You can get and set the current numeric calculator value with the

Calculator.Value value.

You can set and get the Calculator.Value; it is always a double. If you try to set it

to a string value, the string will be converted to a double (e.g., the string “3.14”

becomes the double 3.14; the string “apple” becomes the double NaN).

The Calculator.Message is the small display above the calculator value. When

you start Best Calculator, it will say “System test passed”.

You can set (but not get) the Calculator.Message value.

Examples of using the Calculator.Value and Calculator.Message extensions:

value = Calculator.Value
retval = value * Math.PI
Calculator.Message = “Converted diameter ” ↲

+ value + “ to circumference”
Calculator.Value = retval

First the variable called “value” is set to the current value in the calculator

window. It’s multiplied by PI. Then a message is printed to the calculator

window, and the calculator value is set to the variable called “retval”.

Guide to Using Best Calculator Page | 126

32.2 DATETIME EXTENSION
The DateTime extension is designed to let you add time stamps to your date.

32.2.1 DateTime.GetNow()

The DateTime.GetNow() method returns a filled-in DateTime object set to the

current time.

32.2.2 DateTime.Subtract (datetime)

Use the DateTime.Subtract(datetime) method to get the number of seconds

between two DateTime values. This is used when you need to know how much

time as elapsed.

Example:

startTime = DateTime.GetNow()
REM now perform some calculations
endTime = DateTime.GetNow()
delta = endTime.Subtract (startTime)
PRINT “That took ”, delta, “ seconds”

32.2.3 Hour, Minute, Second, Year, Month, Day and DayOfWeek properties

DateTime includes a number of properties to get the current date and time split

into the component parts (hour, minute, etc.).

32.2.4 DateTime.Date, DateTime.Time and DateTime.TimeHHmm

The Date and Time properties will return the date and time set when you called

GetNow(). The values will be returned as strings which are designed to be put

into a CSV file as a timestamp and interoperate with Excel. The

DateTime.TimeHHmm is designed for Excel files where you want to show the

hours and minutes more clearly (when you make a CSV file where the time

stamps include seconds and milliseconds, Excel will not display the hours by

default),

An example DateTime.Date is “2017-03-23” (March 23rd, 2017)

An example DateTime.Time is ”13:55:23.34” (1:55 PM and 23.34 seconds)

An example DateTime.TimeHHmm is ”13:55” (1:55 PM)

The Date and Time are similar to RFC 3339 dates and times.

Guide to Using Best Calculator Page | 127

32.2.5 DateTime.Iso8601 and DateTime.Rfc1123

The DateTime object knows about two common date/time formats used on the

internet. Iso8601 is an internet standard; it’s also the date standard preferred

by XKCD in https://xkcd.com/1179/. In addition, it’s the format preferred for

JSON data.

Format Example

Iso8601 2017-04-16T07:31:56.9603069-07:00

Rfc1123 Sun, 16 Apr 2017 14:31:56 GMT

Although the Rfc1123 format is required by many internet standards, it has

some issues: it’s a very complex format that’s designed to be extra human

readable, but only for humans that read English. Using this format in new

standards is not recommended.

32.2.6 DateTime.AsTotalSeconds

The AsTotalSeconds returns a number (not a string) of the number of seconds

the DateTime represents. The value uses Unix Time as the basis (the number of

seconds since 1970-01-01, January 1st, 1970.

32.2.7 Example of all the properties

You can use all of the properties to make a simple clock display. This example

demonstrates getting the current time and displaying all of the component

parts.

now = DateTime.GetNow()

PRINT AT 1,1 “YEAR”, now.Year
PRINT AT 2,1 “MONTH”, now.Month
PRINT AT 3,1 “DAY”, now.Day
PRINT AT 4,1 “DAY OF WEEK”, now.DayOfWeek
PRINT AT 5,1 “HOUR”, now.Hour
PRINT AT 6,1 “MINUTE”, now.Minute
PRINT AT 7,1 “SECOND”, now.Second
PRINT AT 8,1 “DATE”, now.Date
PRINT AT 9,1 “TIME”, now.Time
PRINT AT 10,1 “UNIX”, now.AsTotalSeconds

https://xkcd.com/1179/

Guide to Using Best Calculator Page | 128

In the example, the code was run on 2017-04-16 at 7:31 in the morning.

32.3 FILE EXTENSION
The File extension lets you read, write and append files. It includes pickers so

that you can pick a file to read, write or append.

There are three types of pickers: the ReadPicker() selects a file that you can read

from, AppendPicker() picks a file that will be appended to, and WritePicker()

picks a file that will always be overwritten.

32.3.1 file=File.AppendPicker(), file.AppendLine, file.AppendText() and file.Size

Starting with the File object you can ask the user to pick a file to append to and

then append data to the file. This is similar to the WritePicker and WriteText

methods except that the Append methods will add to the existing file and the

Write methods will erase the file first.

Note: there’s a problem with the Windows runtime: the picker will properly

open the file for appending. However, you’ll get a popup asking if it’s OK to

overwrite the file. The file will not be overwritten.

Example of using AppendPicker to write CSV data to a file. If the file starts off

empty, headers are added

Guide to Using Best Calculator Page | 129

REM
REM Demonstrate AppendPicker, AppendText and
AppendLine
REM

file = File.AppendPicker("CSV file", “.csv”, "test.csv")
IF (file.IsError)
 REM file will have a error message
 PRINT file
 STOP
END IF
PRINT "SIZE", file.Size()
IF (file.Size()= 0) THEN file.AppendLine(“time,data”)
now = DateTime.GetNow()

REM
REM Use an array to make
REM perfect CSV data
REM
DIM data(2)
data(1) = now.Time
data(2) = 42.42
file.AppendText (String.Escape(“csv”, data))

32.3.2 file=File.ReadPicker(“.txt”) , file.ReadAll(), file.ReadLines()

Starting with the File object you can ask the user to pick a file to read, and then

either read the file as one large text or read the file as lines.

File is only available to Best Calculator, IOT Edition.

File.ReadPicker() will return a file that the user selects. Once you have this file

you can ReadAll() to read the entire file and ReadLines() to read the file as a set

of lines. You can also get the Size() of the selected file.

If the user did not pick a file, file.IsError will be true.

Once a file is read, you can parse CSV (Coma-separated values) and JSON

(JavaScript Object Notation) into arrays. Use the String.Parse() method to

convert the text into an array of data.

Examples:

REM
REM Demonstrate the File.ReadPicker
REM

Guide to Using Best Calculator Page | 130

CLS GREEN
PRINT "Demonstrate reading a file"
file = File.ReadPicker (".txt")
IF (file.IsError)
 REM file has an error message
 PRINT file
 STOP
END IF
PRINT "Size is ", file.Size()

REM ReadAll will read the entire file as single text.
fulltext = file.ReadAll()
PRINT "The entire file"
PRINT fulltext
PRINT " "

REM
REM ReadLines will read the entire file and split it
REM into individual lines.
REM
lines = file.ReadLines()

PRINT "Count of lines", lines.Count
IF (lines.Count > 1) THEN PRINT "First line", lines[1]

You can also provide a list of extensions that you are willing to accept.

DIM extensions()
extensions(1) = ".json"
extensions(2) = ".txt"
extensions(3) = ".csv"
CLS BLUE
PRINT extensions.Count
file = File.ReadPicker(extensions)
PRINT file

32.3.3 file=File.WritePicker(), file.WriteLine, file.WriteText() and file.Size

Starting with the File object you can ask the user to pick a file to write to. This is

similar to the AppendPicker and AppendText methods except that the Write

methods will always overwrite the entire file.

Example of using WritePicker to write CSV data to a file. Unlike in the Append

example, the file is always completely overwritten.

Guide to Using Best Calculator Page | 131

REM
REM Demonstrate WritePicker, WriteText and WriteLine
REM

file = File.WritePicker("CSV file", “.csv”, "test.csv")
IF (file.IsError)
 REM file will have a error message
 PRINT file
 STOP
END IF

file.WriteLine(“time,data”)
now = DateTime.GetNow()

REM
REM Use an array to make
REM perfect CSV data
REM
DIM data(2)
data(1) = now.Time
data(2) = 42.42
file.WriteText (String.Escape(“csv”, data))

32.4 HTTP EXTENSION
The Http extension lets you read and write data from and to web services.

The Http extension is only available in Best Calculator, IOT edition.

A complete example of writing to a web service is in the Complete Example

section, Connecting to Microsoft Flow .

32.4.1 Http.Get(url, [headers])

Download data from the internet using Http.Get(). You pass in a URL (Uniform

Resource Locator) and an optional array of headers. The result will either be an

error or a filled-in structure with the content plus the HTTP status code and

reason (which will often just be the string OK)

In the example, data is downloaded from a news feed and then

1. It’s checked to make sure the download was OK

2. Some data about the download is printed

Guide to Using Best Calculator Page | 132

3. The Http content is parsed as JSON (JavaScript Object Notation) and

data is pulled out

Example: REM Demonstrate downloading from the internet

REM
REM Download content from a news feed
REM Make sure the download was OK
REM Parse the JSON into data
REM

url = "https://hacker-
news.firebaseio.com/v0/item/8863.json?print=pretty"
result = Http.Get (url)
IF (result.IsError)
 REM Did not get data
 CLS RED
 PRINT "Unable to download URL"
 PRINT "ErrorCode", result.ErrorCode
 PRINT "ErrorString", result.ErrorString
ELSE
 REM All OK
 CLS GREEN
 PRINT "Downloaded from URL"
 PRINT "Status", result.StatusCode
 PRINT "Reason", result.ReasonPhrase
 PRINT "Content", result.Content

 REM Now parse it as json
 REM You can pull individual bits out
 data = String.Parse("json", result.Content)
 PRINT "data.by", data.by
 PRINT "data.title", data.title
END IF

32.4.2 Http.Post() and Http.Put()

The Http.Post (url, content, [header]) and Http.Put (url, content, [header]) work

the same way except for the HTTP method. The Post method will send data

with the HTTP POST verb and the Put method will send data with the HTTP PUT

verb.

The content for both is a string, and the header is an optional array of strings

that will be parsed into HTTP headers. Note that the headers must be in the

correct formats; one of the most common errors is to misspell HTTP headers.

Guide to Using Best Calculator Page | 133

The example is a single function taken from the larger Microsoft Flow example.

In the example, data is put into an array and then converted into a JSON-

formatted string. A Content-Type header is also created and then the url,

content and the header are used in an Http.Put(url, content, header) call.

REM
REM Format and send data to Microsoft Flow
REM
FUNCTION SendData(url, data, time, deviceName, sensor,
min, max)
 REM
 REM Put the data into correct JSON form
 REM
 DIM datalist()
 datalist.AddRow ("data", data)
 datalist.AddRow ("time", time)
 datalist.AddRow ("device", deviceName)
 datalist.AddRow ("sensor", sensor)
 datalist.AddRow ("min", min)
 datalist.AddRow ("max", max)
 json = String.Escape ("json", datalist)

 PRINT json

 REM Microsoft Flow demands that data be passed
using the
 REM a Content-Type of application/json.
 DIM header()
 header[1] = "Content-Type: application/json"
 result = Http.Post (url, json, header)
RETURN result

32.5 MATH EXTENSION
BC BASIC includes a full set of math functions and constants divided into

categories for trigonometry, rounding, logarithm and power functions and other

functions.

32.5.1 Trigonometry (Math.Sin (radians) and more)

BC BASIC does all trigonometry calculations in radians. The function Math.DtoR

(degrees) will convert degrees to radians and Math.RtoD(radians) will convert

radians to degrees.

Function Notes

Guide to Using Best Calculator Page | 134

Math.Acos(value) Calculates the inverse of Math.Cos; given a value
will compute the corresponding angle in radians.

Math.Asin(value) Calculates the inverse of Math.Sin; given a value
will compute the corresponding angle in radians.

Math.Atan(value) Calculates the inverse of Math.Tan; given a value
will compute the corresponding angle in radians.
Note that Math.Tan of 90° is infinite.

Math.Atan2(y, x) Calculates the inverse tangent of given an Y and
X value. Note that Y is given first. This matches
most common program languages including C#,
Java, Fortran, C and JavaScript. Unlike the
Math.Atan function, Math.Atan2 can handle
angles of 90°

Math.Cos (radians) Calculates the cosine of an angle given in radians

Math.Cosh (radian) Calculates the hyperbolic cosine of an angle
given in radians

Math.DtoR (degrees) Converts degrees to radians

Math.RtoD (radians) Converts radians to degrees

Math.Sin (radians) Calculates the sin of an angle given in radians

Math.Sinh (radians) Calculates the hyperbolic sin of an angle given in
radians

Math.Tan (radians) Calculates the tangent of an angle given radians

Math.Tanh (radians) Calculates the hyperbolic tangent of an angle
given radians

32.5.2 Rounding and sign (Floor(), Round() and more)

Function Notes

Math.Abs (value) Calculate the absolute value of a number.

Math.Ceiling (value) Calculates the ceiling of a number. The
ceiling is the number rounded up to the
nearest integer. For example, Math.Ceiling
(2.2) is 3. Ceilings of negative numbers
round up (e.g., to be closer to zero), so
Math.Ceiling (-2.2) is -2.

Math.Floor (value) Calculates the floor of a number. The floor is
the number rounded down to the nearest
integer. For example, Math.Floor (2.8) is 2;
Math.Floor (-2.8) is -3.

Guide to Using Best Calculator Page | 135

Math.Frac (value) Returns the fractional part of a number (the
part after the decimal sign).
Math.Frac(3.456) is 0.456.

For negative numbers, Math.Frac returns the
difference between the number at the next
higher number. For example, Math.Frac(-
7.4) is 0.6.

Math.Floor(value) + Math.Frac(value) is
equal to the original value.

Math.Max (value, …) Returns the largest value of a set of
numbers. You may give one or more values
to Math.Max()

Math.Min (value, …) Returns the smallest value of a set of
numbers. You may give one or more values
to Math.Max()

Math.Mod (v1, v2) Returns the remainder when v1 is divided by
v2. For example, Math.Mod(7,3) is 1
because 3 goes into 7 2 times with a
remainder of 1. Math.Mod(7.6, 3.1) is 1.4
because it’s the remainder after 3.1 is
multiplied by 2.

Math.Round (value
[,dp])

Calculates the rounded value of a number.
The rounded value is the one closest to an
integer. Math.Round (2.2) is 2; Math.Round
(2.8) is 3. If a number is a “.5” number, it is
rounded down (technically, rounded
towards zero; Math.Round (2.5) is 2, and
Math.Round (-2.5) is -2.)

If the dp (decimal places) value is given, it’s
the number of decimal places to round to.
For example, Math.Round (1.234, 2) will
return 1.23. The default is zero, meaning
round to an integer. You can pass in
negative values. For example, Math.Round
(1234, -2) will return 1200.

Guide to Using Best Calculator Page | 136

Math.Sign (value) Return the sign of a number. The sign is 1
for positive values, -1 for negative values,
and 0 for zero.

Math.Truncate (value) Calculates the truncated value of a number.
The truncated value is the integer value
closest to zero. For positive numbers, this is
like Math.Floor (for example, Math.Truncate
(2.8) is 2). For negative numbers, this is like
Ceiling (for example, Math.Truncate (-2.8) is
-2, the integer closer to zero)

Guide to Using Best Calculator Page | 137

32.5.3 Logarithm and power functions (Math.Log, Math.Exp, and more)

Function Notes

Math.Exp(value) Calculates the value evalue for any given value.
This is the reverse of the Math.Log function

Math.Log (value)
Math.Log (value, base)

Can do two different calculations. When given
just one value, calculates the natural (base e)
logarithm of the given value. When given two
numbers, calculates the logbase of the value.

Math.Log2 (value) Calculates the base-2 logarithm of a number.
This is useful when dealing with computer math.
Simple example: you’re writing a program, and
certain variable will hold a number from 0 to
934. How many bits are needed to hold this
value? Answer: Math.Log2(934) is about 9.87;
rounding up, you discover than you will need a
10-bit field to hold the number.

Sophisticated example: You need to store 200
numbers, each of which is a value 0 to 11
(inclusive, 12 total values). Assuming best bit
packing but no compression, how much space
do you need? The answer is that 200 *
Math.Log2(12) = 717 bits; divide by 8 to to
discover that your data will fit into 90 bytes of
space.

Math.Log10(value) Calculates the base-10 logarithm of a number.
This is useful when rounding a number up to the
nearest power-of-ten.

For example, you want the first power of ten
(e.g., 10, 100, 1000) of 783. Math.Log10 (783) is
2.89; rounded up this is 3. Math.Pow (10, 3) is
1000, and that’s the closest larger power of ten
of the number.

Math.Pow (x, y) Calculates the exponent xy. For example,
Math.Pow (10, 3) is 1000.

Math.Sqrt(value) Calculates the square root of the value.

Guide to Using Best Calculator Page | 138

32.5.4 Math.Factorial and Math.IsNaN

The Math.Factorial Function

Math.Factorial(value) is the n! function. For any given integer, it returns the

product of all the integers less than or equal to n. For example,

Math.Factorial(5) is 5 * 4 * 3 * 2 * 1, or 120.

Math.Factorial returns NaN (not a number) for any input that isn’t an integer or

is less than zero. Math.Factorial(0) is 1.

Example of using Math.Factorial

REM simple binding for X! so it's on the
REM main calculator page

x=Math.Factorial(Calculator.Value)
STOP x

The Math.IsNaN function

Math.IsNaN(value) returns true (1) when the given value evaluates to a NaN

value and 0 otherwise. Object that aren’t numbers (or aren’t convertible to

numbers) will also be a NaN value.

NaN values will propagate their values in BC BASIC, and don’t compare equal to

each other. You cannot use the check IF value = Math.NaN THEN PRINT “IS

NAN” because two NaNs are never equal to each other. The only simple way to

tell a number is a NaN value is to use the Math.IsNaN function.

To set a variable to NaN, set it to Math.NaN.

32.5.5 Math.PI, Math.E and Math.NaN values

Two constants, Math.PI and Math.E are available from the Math extension.

Example of using Math.PI and Math.E:

REM Converts a circle AREA to DIAMETER
REM area = Math.PI * R**2, which means
value = Calculator.Value
retval = 2 * SQR (value / Math.PI)
Calculator.Message = “Converted area “ + value + “ to
diameter”
Calculator.Value = retval

Guide to Using Best Calculator Page | 139

The Math.NaN value is for “Not a number”. To test a value to see if it’s a NaN,

use the Math.IsNaN function.

32.6 MEMORY EXTENSION
You can read and write string and numeric values to any of the calculator

memory. In the example, there are 8 unnamed memory cells (Memory0 to

Memory7) plus two named cells (PipeHeight with a value of 45.2 and

PipeFraction with a value of 54.4).

Some named memory values are displayed in the Memory screen of Best

Calculator. Display the Best Calculator memory screen by tapping the

 menu item.

32.6.1 Memory[<expression>] and Memory.<name>

There are three ways to access a cell: by number, by name, and by simple name.

Access cells by number: Memory[<expression>]. The named cells can also

be accessed by number; in the picture, PipeHeight is the cell right after

Memory7 and is accessed as Memory[8].

Guide to Using Best Calculator Page | 140

Access cells by name: Memory[<expression>]. For example, the

PipeHeight cell can be accessed as Memory[“PipeHeight”]

Access cells by simple name: Memory.<constant_name> where the

constant looks like a variable name (without double quotes) and not a string or

number. The memory cell name must be compatible with the rules for variable

names. For example, the name can’t have spaces or start with a number. The

PipeHeight cell can be accessed as Memory.PipeHeight.

32.6.2 GetOrDefault and IsSet functions

Is the memory set? You can tell if a memory cell is set or not in two ways:

Memory.GetOrDefault(<expression>, <default value>) returns either

the memory value (if it’s set) or the supplied default value if not.

Memory.IsSet(<expression>) returns true or false (1 or 0) if the memory

value is already set.

These functions are commonly used to let you “smart initialize” a value. For

example, some calculations use a seldom-changed value (for example, money

conversions). You can use Memory.GetOrDefault as the default value in an

input expression and then save the value that the user enters.

Example money conversion program:

REM
REM The defaults here are roughly the conversion
REM rate from yen to australian dollars.
REM 1 yen is about 0.011 australian dollar;
REM 10000 yen is about 110 australian dollars.
REM
prompt1 = “Conversation rate <from> to <to>” ↲

+ “[e.g., yen to australian dollars]”
prompt2 = “Amount to convert [e.g., amount in yen]”
rate = INPUT DEFAULT Memory.GetOrDefault ↲
 ("ConversionRate", 0.011) PROMPT prompt1
Memory.ConversionRate = rate
amount = INPUT DEFAULT Memory.GetOrDefault ↲
 ("ConversionAmount", 10000) PROMPT prompt2
Memory.ConversionAmount = amount
value = amount * rate
Calculator.Message = "Convert " + amount + ↲
" at a rate of " + rate + " is " + value

Guide to Using Best Calculator Page | 141

Calculator.Value = value

32.6.3 Memory technical details

The calculator memory is both persistent and roaming. Persistent means that

it keeps its value between program runs; it’s never automatically reset to zero

or other default states. Roaming means that the data roams between your

sessions on different computers.

The DUMP command will print out all the memory values to the scrolling

console screen.

Best Calculator Memory display will show the first 10 memory slots. However,

you can actually access more than that with BC BASIC. Memory slots in BC

BASIC can be numbered up to 100. You can show the Best Calculator Memory

screen by pressing the Memory key on the left menu.

Interesting cases for programmers:

1. New in the 2017 release: memory can now be strings as well as doubles!

2. Using indexes less than 0 or more than 100 will silently fail, as will

numeric indexes which are not integer (e.g., 3.5). These reads will

always return a no such value.

3. An integer index and the string version of the index will refer to the

same cell. For example, Memory[1] and Memory[“1”] refer to the same

memory cell.

4. If you used a named cell and there isn’t a cell already with that name,

the cell won’t be visible in the display. If the user then renames a cell in

the memory display with that name, future reads and writes will be to

that user-named cell. BC BASIC doesn’t place any limit on how many

cells there are. Given any particular name, BC BASIC will prefer to save

and load from the visible memory cells, but will use the non-visible cells

if it has to. BC BASIC won’t ever change the name of a cell; that’s up to

you.

5. There isn’t any way to delete memory cells. Once set, the memory cell

is created forever. You can, of course, override the memory value.

Examples of using the Memory extension:

Guide to Using Best Calculator Page | 142

CLS

REM
REM You can use integer index values
REM
Memory[0] = Memory[0] + 1
Memory[1] = Memory[1] +10
PRINT "Numeric Index: "; Memory[0]; " "; Memory[1]

REM
REM You can use simple index names
REM
Memory.PipeHeight = Memory.PipeHeight + 1
PRINT "Simple name: "; Memory.PipeHeight

REM
REM You can use index names with square brackets
REM
Memory["PipeHeight"] = Memory["PipeHeight"] + 1
PRINT "Const Index: "; Memory["PipeHeight"]

REM
REM You can use variables and expressions
REM in the index name
REM
name = "PipeHeight"
Memory[name] = Memory[name] + 1
PRINT "Variable Index: "; Memory[name]

prefix = "Pipe"
suffix = "Height"
Memory[prefix + suffix] = ↲

Memory[prefix + suffix] + 1
PRINT "Expression Index: "; ↲

Memory[prefix + suffix]

REM Some memory isn't set
a = Memory.NotSet
isset = Memory.IsSet ("PipeHeight")
isnotset = Memory.IsSet ("NotSet")
ns = Memory.NotSet =Memory.NotSet

REM Memory.GetOrDefault returns either the
REM memory value or the default value
REM depending on whether the memory was
REM set or not.
default = Memory.GetOrDefault ("NotSet", 34)
notdefault = ↲

Memory.GetOrDefault ("PipeHeight", 34)

Guide to Using Best Calculator Page | 143

DUMP

32.7 SCREEN EXTENSION
The Screen extension gives you additional information about the graphics

screen.

32.7.1 Screen.ClearLine(<line>) and Screen.ClearLines(<from>, <to>)

You can clear an entire line on the screen with Screen.ClearLine (<linenumber>).

This is very useful with doing data-collection work; you can provide a constantly

updated display on the screen with minimal effort

Example:

Screen.ClearLine(3)
PRINT AT 3,1 “Newest Data”;X

The Screen.ClearLines(from, to) function is similar but it clears an entire set of

rows at once.

32.7.2 Screen.RequestActive() and Screen.RequestRelease()

These two powerful functions let you keep the computer screen on even when

the user is not interacting with the computer. These are very commonly used in

Bluetooth and IOT applications when you need your application to run for an

extended period of time without any user activity. Normally a computer or

phone screen will be automatically turned off by the operating system after a

period of time.

The Screen.RequestActive() will ask for the screen to stay on and

Screen.RequestRelease() will allow the screen to turn off. They are counted; if

you call Screen.RequestActive() twice you have to call Screen.RequestRelease()

twice for the screen to be allowed to turn off.

Important: only use these for long-running applications that must remain active

with not human interaction. Most programs do not fall into this category.

Keeping the screen on will drain your batteries and is only recommended when

you know the device will be continuously powered.

Guide to Using Best Calculator Page | 144

32.7.3 Screen.H and Screen.W Extension

The Screen.H and Screen.W provide the height and width, in fixed-width

characters, of the screen. The most common use is to help lay out text to fix a

particular screen size.

Example: using Screen.H and Screen.W to print in the middle of the screen:

CLS MAGENTA
PrintCenter (“Hello, world!”)

FUNCTION PrintCenter (str)
lmargin = 1+INT ((Screen.W - LEN str) / 2)
IF (lmargin < 1) THEN lmargin = 1
row = INT ((Screen.H) / 2)
PRINT AT row,lmargin str
RETURN

The resulting output shows a neatly-centered message.

Guide to Using Best Calculator Page | 145

32.8 SCREEN.GRAPHICS() EXTENSION
The Screen extension includes a Graphics() method that creates a new graphs

window on the screen. You can directly draw lines on the graphic screen or you

can create an automatic graph that will quickly and easily draw your data and

automatically update when the data changes.

32.8.1 Circle(X, Y, radius) Line(X1, Y1, X2, Y2) Rect(X1, Y1, X2, Y2)

A quick sample that draws circle, a line, and a rectangle (both filled and unfilled)

CLS WHITE BLACK
PRINT "Circles, Lines, Rectangles"
g = Screen.Graphics()
g.SetSize (200, 200)
g.SetPosition (100, 100)
g.Background = WHITE
g.Stroke = BLACK
g.Fill = RED
g.Line (1, 1, 100, 200)

g.Rectangle (1, 1, 25, 50)

g.Circle (75, 150, 25)

g.Fill = NONE
g.Rectangle (125,1, 175, 50)
g.Circle (150, 150, 25)

Guide to Using Best Calculator Page | 146

The program first creates a graphics windows (g = Screen.Graphics()) and

then draws a line, a filled rectangle and circle and a non-filled rectangle and

circle.

32.8.2 SetPosition(X,Y) and SetSize(H, W)

You can set the size and position of a graphics window with the

graphics.SetPosition (X, Y) and graphics.SetSize (height, width) methods. This

little example creates two windows and draws something different in each.

CLS
PRINT "Position and resize the graphics windows"

g1 = Screen.Graphics()
g1.Cls()
g1.Title = "First window: vertical lines"
g1.SetPosition (100, 50)
g1.SetSize (50, 200)
g1.Line (140, 1, 140, 50)
g1.Line (150, 1, 150, 50)

g2 = Screen.Graphics()
g2.Cls()
g2.Title = "Second window: horizontal lines"
g2.SetPosition (100, 150)
g2.SetSize (50, 200)
g2.Line (1, 20, 200, 20)
g2.Line (1, 25, 200, 25)

The result is two smaller windows that are moved over a little.

Guide to Using Best Calculator Page | 147

32.8.3 GraphXY(data)

You can also make an automatic graph directly from your data. This sample

shows how to make a small array, add rows of X,Y data, and then display the

data. The graph is given a title.

In this graph,

CLS GREEN
PRINT "Display some XY data"
DIM data()
data.AddRow(1,1)
data.AddRow(2,10)
data.AddRow(3,15)
data.AddRow(6,15)
data.AddRow(7,3)
data.AddRow(10,-1)

g = Screen.Graphics()
g.Title = "My data looks like a volcano"
g.GraphXY (data)

The GraphY() automatic graph takes an array (from the DIM statement) that

contains Y (up-and-down) values. The X value for the graph is taken directly

from the index of the data (1, 2, 3, and so on).

32.8.4 GraphY(data)

Automatic graphs can also be created with just the Y data. For these graphs, the

X data is simply the index into the data array.

Guide to Using Best Calculator Page | 148

CLS GREEN
PRINT "Display some data"
DIM data()
data.Add(1.1)
data.Add(2.2)
data.Add(3.3)
data.Add(2.5)
data.Add(3.3)
data.Add(2.0)
data.Add(.8)

g = Screen.Graphics()
g.Title = "My data looks like a volcano"
g.GraphY (data)

The GraphY() automatic graph takes an array (from the DIM statement) that

contains Y (up-and-down) values. The X value for the graph is taken directly

from the index of the data (1, 2, 3, and so on).

32.8.5 Updating Data with graph.Update() and PAUSE

When you update the data in the DIM’d array that you passed into GraphY, the

graph will automatically update. The update happens when you do a PAUSE

command or when you call graph.Update()

In the example, a SIN, COS and TAN window are created and constantly

updated. In the FOR loop at the end, the angle variable is slightly incremented

on each loop. From the angle variable the SIN COS and TAN values are

calculated and added to the corresponding arrays (sinData, cosData and

tanData). Because each of these arrays has a MaxValue value (each is 100) and

their RemoveAlgorithm is set to “First”, when the 101st item is Add’ed to the

arrays, the whole array is shifted over.

Guide to Using Best Calculator Page | 149

The graphs are redrawn during the PAUSE 1 statement.

CLS WHITE BLACK

PRINT "SIN, COS and TAN updates"
gSin = Screen.Graphics()
gSin.Background = WHITE
gSin.Stroke = BLACK
gSin.SetPosition(100, 50)
gSin.SetSize(75, 200)
gSin.Title = "SIN wave"

DIM sinData()
sinData.MaxCount = 100
sinData.RemoveAlgorithm = "First"
gSin.GraphY(sinData)

gCos = Screen.Graphics()
gCos.Background = WHITE
gCos.Stroke = BLACK
gCos.SetPosition(100, 150)
gCos.SetSize(75, 200)
gCos.Title = "COS wave"

DIM cosData()
cosData.MaxCount = 100
cosData.RemoveAlgorithm = "First"
gCos.GraphY(cosData)

gTan = Screen.Graphics()
gTan.Background = WHITE
gTan.Stroke = BLACK
gTan.SetPosition(100, 250)
gTan.SetSize(75, 200)
gTan.Title = "TAN wave"

DIM tanData()
tanData.MaxCount = 100
tanData.RemoveAlgorithm = "First"
gTan.GraphY(tanData)

FOR angle = 0 TO 25 STEP .1
 sinData.Add (SIN(angle))
 cosData.Add (COS(angle))
 tanData.Add (TAN(angle))
 PAUSE 1
NEXT angle

Guide to Using Best Calculator Page | 150

The resulting three graphs during the middle of the program run.

32.9 STRING EXTENSION
The String extension gives you more ways to parse string (for example, to parse

a string from JSON into an array) and to escape string (for example, to prepare a

string to be written to a CSV file).

32.9.1 String.Escape (“csv”, <string or array>)

Call String.Escape (“csv”, <string>) to convert a string into something that can be

written to a CSV file.

CSV (Comma-separate value) files are commonly used to create spreadsheet-

like files of data. BC BASIC follows the conventions of RFC 4180 for CSV data.

The escape is most commonly used with an array. An array (made with a

statement like DIM data())will be converted into a single line of a CSV file.

CLS BLUE
file = File.WritePicker ("Sample Data file", ".csv",
"data.csv")
DIM data()

REM
REM Make a data file line by line
REM

https://tools.ietf.org/html/rfc4180

Guide to Using Best Calculator Page | 151

data[1] = "Time"
data[2] = "Data"
line = String.Escape ("csv", data)
file.WriteText (line)

data[1] = "8:05"
data[2] = 1.1
line = String.Escape ("csv", data)
file.WriteText (line)

data[1] = "8:10"
data[2] = 1.2
line = String.Escape ("csv", data)
file.WriteText (line)

Note that the File.WritePicker is only available in the IOT edition, not the regular

edition of Best Calculator.

After running this program you will have a CSV file that can be read in by Excel:

If you call String.Escape(“csv”, “string”), the result is single cell of a CSV file

instead of an entire row. The cell will be properly escape and enclosed in

double-quotes as needed.

Guide to Using Best Calculator Page | 152

32.9.2 String.Escape (“json”, <string or array>)

Call String.Escape (“json”, <string>) to convert a string into something that can

be written to a JSON file.

JSON (JavaScript Object Notation) files are commonly used to send and receive

data from the internet. BC BASIC follows the conventions of RFC 7159 for JSON

data.

If you provide an array, you’ll get back a complete JSON description of your

data.

Example:

DIM list()
list.AddRow(“data”, 12.34)
list.AddRow(“sensor”, “ambient”)
list.AddRow(“index”, 33)
json = String.Escape(“json”, list)
PRINT json

The result will be JSON data like this:

{
"data":12.34,
"sensor":"ambient",
"index":33
}

32.9.3 String.Parse(“csv”, <data string>)

Use String.Parse(“csv”, <data string>) to convert CSV-encoded file data into a

data array.

For example, suppose you have a CSV file like this:

time, data
8:05, 1.1
8:10, 1.2
8:20, 1.4

https://tools.ietf.org/html/rfc7159

Guide to Using Best Calculator Page | 153

You can read in the data (using the file = File.ReadPicker(“.csv”)

method to get the file and then allText = file.ReadAll() to get all the

data). Then call data = String.Parse(“csv”, allText) and you’ll have an

array-of-arrays of all your data.

You can print the header values like this:

header = data(1)
PRINT “header”, header(1), header(2)

the result is that the words time and data are printed out.

Full code example:

CLS BLUE
file = File.ReadPicker (".csv")
IF (file.IsError)
 REM file will contain an error string
 PRINT "ERROR", file
 STOP
END IF

REM Read the file and convert to an array
alltext = file.ReadAll()
csv = String.Parse ("csv", alltext)
header = csv[1]

REM Print the data
PRINT "HEADER", header(1), header(2)
FOR index = 2 TO csv.Count
 data = csv(index)
 PRINT index-1, data(1), data(2)
NEXT index

32.9.4 String.Parse (“json”, <data string>)

The String.Parse (“json”, <data string>) method converts data in JSON format

(often downloaded from the internet using the Http.Get() method) into an

array. The array will be in object format, meaning that you can pull data out of

the array by name.

A JSON string might look something like this:

{
 "by" : "dhouston",
 "descendants" : 71,

Guide to Using Best Calculator Page | 154

 "id" : 8863,
 "kids" : [8952, 9224, …],
 "score" : 111,
 "time" : 1175714200,
 "title" : "My YC app: Dropbox - Throw away your … ",
 "type" : "story",
 "url" :
"http://www.getdropbox.com/u/2/screencast.html"
}

Convert the string to an array with data = String.Parse (“json”, str)

You can then get the individual data elements

PRINT data.by
PRINT data.id

Guide to Using Best Calculator Page | 155

33 BLUETOOTH PROGRAMMING WITH BEST CALCULATOR,

IOT EDITION

Best Calculator, IOT edition is a special version of Best Calculator that lets you

control multiple IOT devices using Bluetooth via the built-in BASIC programming

language. Unlike the normal Best Calculator, the Best Calculator, IOT edition is a

paid app. However, it does have a free trial so that you can make sure that it’s

suitable for your device. You should have a basic understanding of Bluetooth

devices to use these features.

33.1 PROGRAMMING BLUETOOTH USING BC BASIC
Let’s start with a simple example: let’s display the names of each paired

Bluetooth device

CLS BLUE
PRINT "Bluetooth Functions"

REM
REM How many Bluetooth devices are available?
REM
devices = Bluetooth.Devices ()
PRINT "Count", devices.Count

FOR i = 1 TO devices.Count
 device = devices.Get(i)
 PrintBluetoothInfo (bt)
NEXT i

FUNCTION PrintBluetoothInfo(bt)
 PRINT "NAME", bt.Name
 PRINT "ID", bt.Id
 PRINT "PROPERTIES", bt.Properties
 PRINT “”
END

The devices = Bluetooth.Devices () line gets all the paired Bluetooth

devices and puts the results into an array. Then the code simply loops through

the devices. We get each device and call PrintBluetoothInfo, passing in the

device. Each device has a Name property with the Windows name of the device.

We can also print out the device Id and the Properties.

Guide to Using Best Calculator Page | 156

The Bluetooth.Devices() method does not return every possible Bluetooth

device. Devices it does not return include

• Devices which the user has not paired. BC BASIC does not include any

functions to help the user pair their device

• Devices which are reserved for the system. This includes HID device like

mice and keyboards, and audio devices like speakers and headphones

• Bluetooth beacons like the popular Bluetooth enabled luggage tags or

the Bluetooth beacons found in some stores, museums, and work

places.

Although Best Calculator, IOT edition gives you access to many of the Windows

10 Bluetooth capabilities, there are still areas where you might need to add your

own customizations. The paid version of Best Calculator, IOT edition comes

with the full source code for the calculator. Advanced programmers will find

that they can add additional capabilities in C#.

In this and the next chapters, you’ll learn

• An introduction to programming Bluetooth using BC BASIC

• The different stages of initializing and programming your device

• The different objects that used for for programming Bluetooth devices

• Reading data from Bluetooth services and characteristics

• Using the specializations for specific devices

• All the specializations for specific devices

• All the different BC BASIC programs that come with Best Calculator, IOT

edition

33.2 INITIALIZING YOUR DEVICE AND AVAILABLE PROPERTIES
There are three stages of using a Bluetooth device. In the first stage (after

calling Bluetooth.Devices), you can get all paired Bluetooth devices. This

provides just a few simple properties and methods.

To get to stage two, call device.Init() on any particular device. This will verify

that your program is allowed to access the device (the user can refuse

permission), and that no other program has access to the device. Once you call

Init(), you are allowed to read and write data to the device. You can call Init() as

Guide to Using Best Calculator Page | 157

often as you wish, but you must call it at least once to get full access to the

device.

In the third stage, you call the device.As(“<device type>”) method to get a

specialized version of the device. This gives you methods that are customized

for a particular device and which are much easier to use.

Example of the second stage, showing the call to Init() and the additional

methods available. This is a modification of the starting program; Init() is called

before calling PrintBluetoothInfo and the PrintBluetoothInfo function is updated

to display the device’s Bluetooth address.

CLS BLUE
PRINT "Bluetooth Initialization"

REM
REM How many Bluetooth devices are available?
REM
devices = Bluetooth.Devices ()
PRINT "Count", devices.Count

FOR i = 1 TO devices.Count
 device = devices.Get(i)
 device.Init()
 PrintBluetoothInfo (device)
NEXT i

FUNCTION PrintBluetoothInfo(bt)
 PRINT "NAME", bt.Name
 PRINT "ID", bt.Id
 PRINT "PROPERTIES", bt.Properties
 PRINT “ADDRESS”, bt.BluetoothAddress
 PRINT “CONN.”, bt.ConnectionStatus
 PRINT “”
END

Once you initialize an object, you can read and write data. For example, if you

have a DOTTI device from wittidesign.com, you can read the power level using

service 180f and reading the Power data from characteristic 2a19.

Guide to Using Best Calculator Page | 158

33.2.1 Error handling and Bluetooth

You must handle Bluetooth errors if you want to create a robust program.

Bluetooth calls can fail in many ways: the computer that your program is run on

might not have a Bluetooth radio; the devices might be out of range or turned

off or might go out of range while your program is trying to communicate.

You should check the error value returned by the Bluetooth methods.

CLS BLUE
PRINT "Bluetooth Initialization"

devices = Bluetooth.Devices ()

FOR i = 1 TO devices.Count
 device = devices.Get(i)
 status = device.Init()
 IF (status.IsError)
 PRINT “Unable to initialize”, device.Name
 ELSE
 PrintBluetoothInfo (device)
 END IF
NEXT i

FUNCTION PrintBluetoothInfo(bt)
 PRINT "NAME", bt.Name
 PRINT "ID", bt.Id
 PRINT "PROPERTIES", bt.Properties
 PRINT “ADDRESS”, bt.BluetoothAddress
 PRINT “CONN.”, bt.ConnectionStatus
 PRINT “”
END

Guide to Using Best Calculator Page | 159

33.3 THE OBJECTS YOU USE WHEN PROGRAMMING YOUR BLUETOOTH DEVICE
You will use four main objects when you program a Bluetooth device. If you’ve

ever done object-oriented programming, you’ll recognize the terms method and

property as they are used in BC BASIC. BC BASIC has some simplifications that

make BC BASIC a little different from what you’ve seen before.

A method is like a function call (like SIN(0.01)) but where the “function” is the

name of a variable followed by a dot and followed by the method name to call.

For example, to get a list of all of the available Bluetooth devices, you call the

Devices() method on the globally available Bluetooth object like this: LET

devices = Bluetooth.Devices(). In this example, a new variable devices is

made by calling the Devices() method on the Bluetooth object.

A property is like a method but it doesn’t take any arguments and you don’t

need any parenthesis. For example, once you have the list of Bluetooth devices

you can find out its length with the Count property like this: PRINT

devices.Count.

You will always start with a single global object (like Bluetooth) which is always

available to your program. From there, you can get other objects like an array

(list) of devices and the individual devices. Unlike other language, BC BASIC

does not make you use the new operator just to make an object. BC BASIC also

only lets you call a single method at a time.

For example, you must make these calls

devices = Bluetooth.Devices()
device = devices.Get(1)

You cannot combine the two method calls, so that you cannot make a single line

like Bluetooth.Devices().Get(1) and have it work.

BC BASIC does not allow you to define your own classes and objects in BC BASIC.

33.3.1 The Bluetooth object

Subject to your license, the Bluetooth object is always available to your

program. It contains just a few methods. The PickDevicesName() lets the user

pick a single Bluetooth device. Devices() and DevicesName() methods both

return a list of Bluetooth devices.

Guide to Using Best Calculator Page | 160

The Bluetooth.Devices() method returns a list of all paired Bluetooth devices on

the system except for devices reserved to the system.

The Bluetooth.DevicesName(“<name>”) method returns the same list except

that the Windows device name must match the passed-in value. The value must

either exactly match or can start with or end with a star to match the end or

start of a name. This is very useful when you’re trying to control specific devices.

For example, to control the DOTTI device, it’s handy to use just the devices

listed in Bluetooth.DevicesName(“*Dotti”) because DOTTI devices by

default are all called “Dotti” and when changed by the DOTTI app get a name

that ends with -Dotti.

The name can also be a list of possible names to match, separated by a comma.

This is useful when your device might be known by different names (e.g., the TI

SensorTag 1350 can be known as the CC1350 SensorTag or the SensorTag v2.0)

The Bluetooth.PickDevicesName(“<name>”) method uses the same list that

DevicesName returns and show a dialog that where the user can pick a single

device.

33.3.2 The Bluetooth.Devices object (Array / ObjectValueList)

The list of available devices from Bluetooth.Devices and Bluetooth.DevicesName

has a single property called Count and a single method called Get(<index>)

which gets individual devices.

The deviceList.Count property returns the number of devices in the list. An

empty list has length zero.

The deviceList.Get(index) method will return a single device. The index must be

a value that is 1 or more and less than or equal to the Count property. For

example, if you call Bluetooth.Devices and get a list whose count is 2, then you

can call Get(1) and Get(2) to get the two devices.

If you call Get() with the wrong number of arguments or with an invalid

argument (not a number, or out of range), the returned object is an error

object.

33.3.3 Individual Bluetooth devices from Bluetooth.Devices

You will get individual Bluetooth devices by calling the

Bluetooth.PickDevicesName() or by calling the Get() method on the list that you

get by calling Bluetooth.DevicesName(“<name>”) or Bluetooth.Devices().

Guide to Using Best Calculator Page | 161

Devices start off uninitialized. From an uninitialized device, you can read the

name and id (plus a little bit more). After you call Init() and the call succeeds,

you can read and write data to the device using the Read and Write methods.

Properties that are always available on a device include the Name, Id and

Properties of the device. For developers who need very detailed information

about their devices, you can also retrieve any property from the underlying

Windows.Devices.Enumeration.DeviceInformation value that each device

include. A list of these properties can be found on the MSDN web site.

If you’ve called the device.Init() method, then properties from the Microsoft

Windows.Devices.Bluetooth.BluetoothLEDevice are also available. Where a

property from the DeviceInformation conflicts with a property from

BluetoothLEDevice, the DeviceInformation value is returned. When the

property names are in conflict, you can access the BluetoothLEDevice property

by prepending “BLE_” to the property name. For example, device.Name is the

DeviceInformation name, and device.BLE_Name is the BluetoothLEDevice name.

The read and write routines are explained in the “Reading data from raw

Bluetooth devices” section further down.

33.3.4 Specializations

A number of common Bluetooth devices have specializations available using the

device.As(“<type>”) method. The specializations let you control Bluetooth

devices without having to know the exact services and characteristics and data

formats for individual devices.

The specializations are each documented in a subsequent chapter.

Specializations exist for different Bluetooth lights, gadgets and IOT sensor

platforms like the TI SensorTag 2541.

33.4 SELECTING A DEVICE WITH PICKDEVICESNAMES AND MORE
Often you need to be able to pick a specific device to control. For example, you

might have several of the NOTTI illuminated devices. You want to pick which

NOTTI device you want to control.

33.4.1 Bluetooth.PickDevicesName(<name pattern>)

Bluetooth.PickDevicesName(<name pattern>) is often a good choice. It will

show a list of available Bluetooth devices that match your name pattern. For

Guide to Using Best Calculator Page | 162

example, the NOTTI devices all have a name that ends with Notti. Your BASIC

code would look like:

device = Bluetooth.PickDevicesName("*ot*")
IF (device.IsError)
 PRINT "Sorry, no device was picked"
ELSE
 PRINT "Device ";device.Name;" was picked!"
END IF

When PickDevicesName is called, it pops up a dialog to let the user pick a

device. In the example, the user can pick any device that matches *otti. This

matches both the Notti and Dotti devices. If the user doesn’t pick a device, taps

cancel, or there is no matching device, the return value will be an error.

The dialog helps the user pick the correct device in two ways. Firstly, the device

ID is listed; these are always unique to the actual device; they are never

duplicated.

The user can set the “preferred” name of the device. The edit icon () lets the

user set a ‘tag’ for a Bluetooth device. That tag is associated with the Bluetooth

id; as long as the ID doesn’t change, the name will remain.

The name is roamed with Best Calculator, IOT Edition data. That means that

when the user sets a name on one device, all their devices that are logged into

the same MSA (Microsoft) account will have access to the same name. The

name will be the same regardless of which BC BASIC program is running.

Guide to Using Best Calculator Page | 163

33.4.2 Bluetooth.DevicesName(<name pattern>)

Bluetooth.DevicesName(<name pattern>) lets you access the same list of

devices that the PickDevicesName method shows the use. You can use this

when you need to perform the same action on multiple devices.

33.4.3 Bluetooth.Devices()

Bluetooth.Devices() returns a list of all the available Bluetooth devices

regardless of their name.

Just because a device is returned doesn’t mean you have full access to the

device. When you call the Init method for the first time, the user can choose to

let BC BASIC have full access to the device, or can choose to not grant full

access. Additionally, the device might already be used by another program.

33.5 READING DATA FROM RAW BLUETOOTH SERVICES AND CHARACTERISTICS
What you’ll mostly be doing with a Bluetooth device is reading and writing to it.

To do that, you will need to know the service and characteristic that you want to

read or write. These take the form of long and short GUIDs. These will be

documented in the device documentation somewhere. The data might be in a

specific format that you will have to read. Additionally, when you read from a

device you can read either the cached data (super fast, but not as fresh) or the

raw data (always fresh, but much slower).

Every Bluetooth LE device exposes a set of services; each service is specified

with a GUID. The Bluetooth functions all take in GUIDs as a string; the string is

most commonly the short version of the GUID (e.g., 1800) but will also accept

the long version (e.g., 00001800-0000-1000-8000-00805f9b34fb). Each service

in turn exposes a set of characteristics which are also specified with a short or

long GUID.

Guide to Using Best Calculator Page | 164

The hierarchy of Bluetooth features.

33.5.1 Direct device Read routines

33.5.1.1 device.Read[Cached|Raw]Byte (service, characteristic) byte

There are two read methods that read a single byte from the device. Many

characteristics have just a single byte of data, so it’s handy to be able to just

read that byte. The byte is read as an unsigned value from 0 to 255.

There are two separate Read methods available: ReadCachedByte and

ReadRawByte. The ReadCachedByte method reads a cached byte; it’s fast but

the data may not be fresh. The ReadRawByte method asks the device for fresh

data; it’s likely to be slower but gets the most recent data.

33.5.1.2 device.Read[Cached|Raw]Bytes (service, characteristic) array of data

There are two read methods that read multiple bytes from the device. The data

returned is an array (most likely a BCValueList).

The number of bytes read is available with the data.Count property

Bluetooth global object

• Lets you find Bluetooth LE devices

.Device() or .DevicesName() list of devices

• call Get(index) to get an individual device

Individual Bluetooth device

• Call Init() to get full access to the device

Service (like 180f for power)

• Each device normally has several services.

Characteristic (like 2a19, read current power level for service
180f)

• Some services just have one characteristic; others have many characteristics

• Use the methods like ReadRawByte() to read data

Guide to Using Best Calculator Page | 165

You can ready individual bytes with the data.Get(index) method; the index is 1-

based (1 up to and including Count). The data is returned as a unsigned byte

with values 0 up to and including 255.

Example:

data = device.ReadRawBytes(“2000”, “2003”)
PRINT AT 1,1 data.Get(1)
PRINT AT 2,1 data.Get(2)
PRINT AT 3,1 data.Get(3)

As a handy convenience, call data.GetValue(index, type) to interpret the data in

a variety of ways. Supported types are:

• “int16-le” reads two bytes of data and treats them as a LSB and MSB of

a two-byte, signed integer value. For example, if the two bytes are [4

10] the result will be (10*256) + (4). If the second byte is more than

127, it’s treated like a signed value. For example, if the two bytes are

[255 255] then the returned value is -1.

There are two separate Read methods available: ReadCachedBytes and

ReadRawBytes. The ReadCachedBytes method reads cached data; it’s fast but

the data may not be fresh. The ReadRawBytes method asks the device for fresh

data; it’s likely to be slower but gets the most recent data.

Example: read the Power data from a DOTTI device using the raw Bluetooth

read commands

CLS BLUE
PRINT "Read Bluetooth Power"

REM
REM How many Bluetooth devices are available?
REM
devices = Bluetooth.Devices ()

FOR i = 1 TO devices.Count
 device = devices.Get(i)
 IF (device.Name = “Dotti”) THEN GetPowerInfo(device)
NEXT i

FUNCTION GetPowerInfo(bt)

Guide to Using Best Calculator Page | 166

 bt.Init()
 PRINT "NAME", bt.Name
 PRINT “POWER”, bt.ReadRawByte(“180f”, “2a19”)
 PRINT “CACHE”, bt.ReadCachedByte(“180f”, “2a19”)
END

Example: write a red dot to the DOTTI device in position (2,2) using the raw

Bluetooth write commands

CLS BLUE
PRINT "Write red dot onto DOTTI device"

devices = Bluetooth.Devices ()

FOR i = 1 TO devices.Count
 device = devices.Get(i)
 IF (device.Name = “Dotti”) THEN WriteDot(device, 10,
255, 0, 0)
NEXT i

FUNCTION WriteDot(bt, pos, r, g, b)
 bt.Init()
 REM The fff0 is the service for many DOTTI commands
 REM The fff3 is the characteristic used by service fff0
 REM for many of the DOTTI commands
 REM the 7 and 2 are the bytes that define the DOTTI
 REM command to send (0x0702 means set LED color)
 REM the pos is the position from 1 to 64
 REM the r g and b are the color to set.
 bt.WriteBytes (“fff0”, “fff3”, 7, 2, pos, r, g, b)
END

33.6 USING CALLBACKS TO READ DATA
Instead of polling your device for data you can have the Bluetooth device tell

you when the data changes. You have to perform two steps get callbacks:

Tell the device to send data with device.WriteCallbackDescriptor(service,

characteristics, value)1. method. The service and characteristic say which data

value to set the notifications on. The value parameter is one of 0 = None,

1 This exactly corresponds with the Windows Runtime
WriteClientCharacteristicConfigurationDescriptorAsync method call. That name is much,
much too long for a simple language like BC BASIC!

Guide to Using Best Calculator Page | 167

1=Notify and 2=Indicate. Your Bluetooth device specs will say whether any

particular characteristic is Notify or Indicate capable. Many devices support

Notify but not Indicate. The callback-name is the name of the BC BASIC function

that you want to be called when the data changes; it’s ignored when the value is

0.

You can place multiple callbacks on the same service and characteristic.

Example: getting notifications for accelerations on a TI SensorTag 2541

CLS BLUE
PRINT AT 5,1 "Acceleration Data"

devices = Bluetooth.DevicesName (“SensorTag*”)

REM
REM Constants for TI SensorTag 2541 Accelerometer
REM These are taken from the data sheets.
REM
AccService = "f000aa10-0451-4000-b000-000000000000"
AccData = "f000aa11-0451-4000-b000-000000000000"
AccConfig = "f000aa12-0451-4000-b000-000000000000"
AccPeriod = "f000aa13-0451-4000-b000-000000000000"

PRINT "COUNT", devices.Count
IF devices.Count < 1 THEN STOP

device = devices.Get(1)

PRINT “SensorTag Address”, device.Init()

REM Tell the SensorTag to enable the Accelerometer
REM Config=1 means enable
REM Period=20 means get data fast (50 per second)
device.WriteBytes(AccService, AccConfig, 1)
device.WriteBytes(AccService, AccPeriod, 100)

REM 1=Notify (2=Indicate 0=None)
device.WriteCallbackDescriptor (AccService, AccData, 1)
device.AddCallback (AccService, AccData, “WriteAcc”)

REM
REM Wait a little while and then turn off the Accelerometer
REM

FOR time = 1 TO 10
 PAUSE 50

Guide to Using Best Calculator Page | 168

 PRINT AT 1,1 time
NEXT time

REM
REM Turn off the accelerometer; turn off notify; remove
callback
REM
device.WriteCallbackDescriptor (AccService, AccData, 0)
device.WriteBytes(AccService, AccConfig, 0)
device.RemoveCallback (AccService, AccData, “WriteAcc”)

FUNCTION WriteAcc(device, x, y, z)
 PRINT AT 3,1 " "," "," "
 PRINT AT 3,1 x, y, y
END

Guide to Using Best Calculator Page | 169

33.7 USING THE SPECIALIZATIONS FOR SPECIFIC DEVICES
The easiest way to control a Bluetooth device is to use one of the specializations

that are available for select Bluetooth devices. Specializations include methods

that can easily control the devices without having to know service and

characteristics GUIDs for your device. You would normally only use the Raw

Bluetooth commands either when there isn’t a specialization available for your

device or when you need fine-=grain control over your device.

To create a specialization, call the device.As(“<device type>”) method on a

device object. Each available specialization is fully described along with the

device type you need to provide.

It’s important to know that BC BASIC doesn’t verify that you are using the right

specialization! That’s because you might be controlling some new device, or a

variant of an existing device. Using the wrong specialization will mostly just

result in the commands not working.

Example: the (3,3) pixel to green using the DOTTI specialization.

CLS BLUE
PRINT "Write green dot onto DOTTI device"

devices = Bluetooth.DevicesName (“*Dotti”)

FOR i = 1 TO devices.Count
 device = devices.Get(i)

 Dotti = device.As (“DOTTI”)
 Status = Dotti.SetPixel (3, 3, 0, 255, 0)
 PRINT “status”, Status
NEXT i

Guide to Using Best Calculator Page | 170

34 BLUETOOTH SPECIALIZATIONS FOR SPECIFIC DEVICES

Note that Best Calculator, IOT edition has no special relationship with any of the

device manufacturers listed below. In all cases, the devices are programmed

based on generally available information.

The Network Inspector program, also from Shipwreck Software, is useful when

investigating any Bluetooth device. Most devices broadcast their capabilities in

a way that any programmer can read and understand how to control these

devices.

The appendix includes sample Bluetooth programs for many devices.

Guide to Using Best Calculator Page | 171

34.1 BBC MICRO:BIT
The BBC micro:bit is a small programmable

computer designed with a set of on-board

sensors plus easy connectivity to more

devices through an expansion interface. For

full information, please see the micro:bit

web site at http://microbit.org/ .

To pair the device, power the device on,

press both the A and B button and while holding them down, press the reset

button on the back. The device will show the string PAIRING MODE on the

display. Then pair. A 6-digit code will be shown on the device.

Normally the device will run its out-of-box program and encourage people to

press the buttons. Although the Bluetooth is functional in this mode, it’s easier

when the device is running a program that just does Bluetooth. A hex file called

microbit-blue-pairing-not-required.hex that reprograms your BBC micro:bit to

do just that is available at http://www.bittysoftware.com/downloads.html . A

micro:bit uploader that will automatically move a hex file to your BBC micro:bit

is available from touchdevelop. The Bluetooth services are documented at

https://github.com/lancaster-university/microbit-docs/tree/master/docs/ble

Your steps are:

1. Plug your micro:bit into your computer’s USB port

2. Get a copy of the micro:bit uploader from touchdevelop and run it

3. Download a copy of microbit-pairing-not-required.hex from

bittysoftware. Download it to your downloads directory; it will

automatically up loaded to the micro:bit

4. The micro:bit will restart and ask you to draw a circle. This calibrates

the magnetometer. Draw the circle by tipping the micro:bit around.

Once you are done, the LED display will blank

Now you can pair the device from the Bluetooth Settings control panel.

The default Windows name for the device is beLight; to get all of the devices call

devices = Bluetooth.DevicesName (“BBC micro:bit*”).

To get the beLight specialization of a device, call tag = device.As(“beLight”). .

To list available methods, use tag.Methods

http://microbit.org/
http://www.bittysoftware.com/downloads.html
https://www.touchdevelop.com/microbituploader
https://github.com/lancaster-university/microbit-docs/tree/master/docs/ble

Guide to Using Best Calculator Page | 172

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

AccelerometerSetup(onoff,
period, callback)

callback (tag, x, y, z)

Sets the accelerometer to on (1)
or off (0); if on, then also sets
the period. The callback is the
name of the function to be
called when the accelerometer
data changes.
The period is in milliseconds.
The x, y and z values are in “g”
values.

ButtonSetup(onoff callback)

callback (device, A, B)

Sets the button callback to on
(1) or off (0). The callback is the
name of the function to be
called when the button data
changes.

MagnetometerSetup(onoff,
period, callback)

callback (device, x, y, z)

Sets the magnetometer to on
(1) or off (0); if on, then also
sets the period. The callback is
the name of the function to be
called when the accelerometer
data changes.
The period is in milliseconds.

TemperatureSetup(onoff,
period, callback)

callback (device, temperature)

Sets the thermometer to on (1)
or off (0); if on, then also sets
the period. The callback is the
name of the function to be
called when the accelerometer
data changes.
The period is in milliseconds.
The temperature is in degrees
Celsius.

Guide to Using Best Calculator Page | 173

SetLed (r1, r2, r3, r4, r5) Sets the LED pattern on the
micro:bit. The values are the 5
rows of LEDs. All-zeros will turn
all the LEDs off; 31 (5 bits on)
will turn all the LEDs on.

ToString() Prints out a little information
about your DOTTI device.

Write(string, speed) Writes the string on the
scrolling text. The speed is the
speed in milliseconds; 100 is a
good value.

The device is mostly programmed through special service ffb0. The SetColor call

is characteristic ffb5, and takes in 4 bytes for red, green, blue and white values.

The device supports all the regular Bluetooth services and characteristics.

1800 Generic Access: 2a00 (Name) defaults to “BBC micro:bit”; 2a01

(Appearance) defaults to Unknown, 2a02 (Privacy) is False.

180a Device Info: 2a29 (Manufacturer, but the value is just “” instead of a

specific value)

Guide to Using Best Calculator Page | 174

34.2 BELIGHT CC2540T LIGHT DEVELOPMENT KIT
The beLight CC2540 device is a small high-intensity

light development kit from Texas Instruments (TI). It

has four built-in LEDs: red, green, blue and high-

intensity white. For full information, please see the

TI web site at http://www.ti.com/tool/cc2540tdk-

light .

The Bluetooth PIN for pairing the device is 0.

The default Windows name for the device is

beLight; to get all of the devices call devices =

Bluetooth.DevicesName (“beLight”). To get the beLight specialization of a

device, call beLight = device.As(“beLight”).

To list available methods, use beLight.Methods. The specialization includes the

following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

SetColor (r, g, b, white) Sets the color to a given red,
green blue and white value.

ToString() Prints out a little information
about your device.

The device is mostly programmed through special service ffb0. The SetColor call

is characteristic ffb5, and takes in 4 bytes for red, green, blue and white values.

The device supports all the regular Bluetooth services and characteristics.

1800 Generic Access: 2a00 (Name) defaults to “beLight”; 2a01 (Appearance)

defaults to Unknown, 2a02 (Privacy) is False.

180a Device Info: 2a29 (Manufacturer, but the value is just “Manufacturer

name” instead of a specific value)

http://www.ti.com/tool/cc2540tdk-light
http://www.ti.com/tool/cc2540tdk-light

Guide to Using Best Calculator Page | 175

34.3 DOTTI DEVICE
The DOTTI device is a desktop device with an 8x8

array of pixels. Each pixel can be programmed

individually. For fully information, see the Witti

Design web site at http://www.wittidesign.com .

The Bluetooth PIN for pairing the device is 123456.

The default Windows name for the deviceis Dotti;

to get all DOTTI devices call devices =

Bluetooth.DevicesName (“*Dotti”). The

regular DOTTI app can rename the device but will always add a -Dotti to the

end.

To get the DOTTI specialization of a device, call Dotti = device.As(“DOTTI”). The

name is in upper case to conform to how the manufacturer describes the device

in their manual.

To list available methods, use Dotti.Methods

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

GetPower() Gets the current battery power
of the device using service 180f
characteristic 2a19. The value is
not cached.

ChangeMode(mode) Sets the mode;
0=default on icon
1=animation
2=clock
3=dice game
4=battery indicator
5=screen off

http://www.wittidesign.com/

Guide to Using Best Calculator Page | 176

LoadScreenFromMemory(part1,
part2)

Loads the visible screen from
memory. Part1 and Part2
describe the memory. There is
a BASIC program that helps
explain what these values
should be.

SaveScreenToMemory(part1,
part2)

Saves the current visible screen
to memory.

SetAnimationSpeed(speed) Sets the animation speed; 1 is
very fast and 6 is very slow.

SetColumn (column, r, g, b) Sets the given column to the
given red, green and blue value.
Columns are numbers 1 to 8.

SetName (name) Sets the Bluetooth name of the
device as returned by service
1800 characteristic 2a00. The
name will be modified as
needed so that it ends with the
word “-Dotti” (or is simply
Dotti) to match the regular
DOTTI app.

The Windows name of the
device may not change until the
device is reset and the re-
paired.

SetNameArbitrary(name) Like SetName, but the name
won’t be changed to end with “-
Dotti”

SetPanel (r, g, b) Sets the entire panel color to
the given red, green and blue
values.

SetPixel (x, y, r, g, b) Sets the given pixel to the given
red, green and blue values. The
x and y values must be 1 to 8.

SetRow (row, r, g, b) Sets the given row to the given
red, green and blue values.
Rows are numbered 1 to 8.

SyncTime(h,m,s) Sets the time on your DOTTI
device.

Guide to Using Best Calculator Page | 177

ToString() Prints out a little information
about your DOTTI device.

The special DOTTI service is fff0. Most commands are sent using characteristics

fff3 except for and for the SET NAME command which uses characteristic fff5.

By sending command bytes to these characteristics, you can control the DOTTI

device.

The DOTTI device supports all the regular Bluetooth services and characteristics.

1800 Generic Access: 2a00 (Name) defaults to “Dotti”; 2a01 (Appearance)

defaults to Unknown, 2a02 (Privacy) is False.

180a Device Info: 2a29 (Manufacturer, but the value is just “Manufacturer

name” instead of a specific value)

180f Battery Level: 2a19 (Power, but it always seems to be 100)

fff0: D (fff3=D Data In): [writable], (fff5=C Command Channel)

Guide to Using Best Calculator Page | 178

34.4 HEXIWEAR WEARABLE PLATFORM
The Hexiwear from mikroElektronika

(http://hexiwear.com) is a small wearable

platform with weather, health and

environmental sensors like accelerometers

and pulse measurements. The device

generates a unique pairing code each time it’s

paired.

As of September 2016, the device can pair

with a Windows Phone but apparently does

not pair with a Windows laptop or desktop.

The default Windows name for the device starts with HEXIWEAR; to get all of

the devices call devices = Bluetooth.DevicesName (“HEXIWEAR*”).

To get the specialization of a device, call tag = device.As(“Hexiwear”).

To list available methods, use tag.Methods

One of the unique things about the Hexiwear is that you can’t control what data

you can read. There are 4 modes (accessed via device.ReadMode()) . The

0=Idle 2=sensor tag 5=heart 6=pedometer. You can only read data when the

user has manually set the device to the correct mode.

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached.

GetManufacturerName() Gets the data from service 180a
characteristic 2a29.

GetFirmwareRevision() Gets the data from service 180a
characteristic 2a29. The device
I tested against reported being
1.0.1/1.0.0. This doesn’t match
the spec.

GetPower() Reads a battery charge percent
from 0..100 from service 180f
characteristic 2a19.

http://hexiwear.com/

Guide to Using Best Calculator Page | 179

GetMode() Gets the Hexiwear mode.
Sensors are only available in the
right mode.
0 Idle
2 Sensor Tag
5 Heart
6 Pedometer (steps+calories)

GetAccelerometer() Returns an XYZ value
Example:
LET d = tag.GetAccelerometer()
PRINT d.X

GetGyroscope() Returns an XYZ of the gyroscope
values.

GetMagnetometer() Returns an XYZ of the current
compass setting.

GetLight() Returns the current brightness
value in a range of 0 to 100.

GetTemperature() Returns the current
temperature in degrees C.

GetHumidity() Returns the current humidity as
a percent from 0 to 100.

GetPressure() Returns the current pressure in

GetHeart() Gets the heart rate (when mode
is 5) in beats per minute

GetSteps() Gets the current steps count

GetCalories() Gets the current calorie use
estimate.

Guide to Using Best Calculator Page | 180

34.5 MAGICLIGHT AND FLUX LIGHT
The MagicLight from Shultz and the Flux light

are identical Bluetooth-enabled color-

changing light bulbs.

The pairing code is 0.

The default Windows name for the device

starts with LEDBlue; to get all of the devices

call devices = Bluetooth.DevicesName

(“LEDBLue*”).

To get the specialization of a device, call light = device.As(“MagicLight”).

To list available methods, use light.Methods

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

SetColor (r, g, b) Sets the LED color to the given
red, green and blue value.
Columns are numbers 1 to 8.

SetOff() Turns off the light

SetOn() Turns on the light to the last
color setting

ToString() Prints out a little information
about your device.

Guide to Using Best Calculator Page | 181

34.6 METAWEAR METAMOTION R DEVICE
The MetaMotion device is a very small wearable

device in the mbientlab MetaWear range of

sensors. There are several different MetaWear

devices; with care this one device can be use with

ones other than the MetaMotion.

The MetaMotion includes multiple sensors

including ambient light, accelerometer,

gyroscope and magnetometer and barometer. It’s

also got a built-in 3-color LED with a sophisticated programmable pulsing

scheme. For full information, see the mbientlab.com web site at

https://mbientlab.com/ and a git repository at https://github.com/mbientlab.

No PIN is required for paring.

The default Windows name for the device is MetaWear; to get all MetaWear

devices call devices = Bluetooth.DevicesName (“MetaWear”)

To get the MetaMotion specialization of a device, call meta =

device.As(“MetaMotion”). The name conforms to how the manufacturer

describes the device in their manual.

To list available methods, use device.Methods. There are a complete set of

examples for all these method; just look for the BT: Metawear Metamotion

sample.

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

GetPower() Gets the current battery power
of the device using service 180f
characteristic 2a19. The value is
not cached.

https://mbientlab.com/
https://github.com/mbientlab

Guide to Using Best Calculator Page | 182

AccelerometerSetup (onoff,
function[, gforce=2 [, rate=25]])

When onoff is 1, will start to call
function at the preferred rate.

 The accelerometer range will
be set to the preferred value (or
more); allowed values are 2, 4,
8 and 16 and are in units of G-
force.

The rate is in callbacks per
second; the minimum value is
.78125 and the maximum value
is 3200.

The callback function will be
called with the Bluetooth
specialization and the three
values, x, y and z.

AltimeterSetup (onoff, fnc,
speed)

When onoff is 1, set up the fnc
called to be called when the
altimeter data changes.

The speed is in seconds
between callback. Valid values
are 4, 2, 1, 0.5, 0.25, 0.125 and
0.0625.

The altimeter callback will be
called with the Bluetooth
specialization and the height in
meters. Multiply the value by
3.2808399 to get the number of
feet.

You can have either altimeter or
barometer data, but not both.

BarometerSetup (onoff, fnc,
[speed=1])

When onoff is 1, set up the fnc
called to be called when the
barometer data changes.

Guide to Using Best Calculator Page | 183

The speed is in seconds
between callback. Valid values
are 4, 2, 1, 0.5, 0.25, 0.125 and
0.0625

The barometer callback will be
called with the Bluetooth
specialization and the the
atmospheric pressure in
pascals.

You can have either altimeter or
barometer data, but not both.

ButtonSetup (onoff, fnc) When onoff is 1, set up the fnc
function callback then the
button is pressed.

The callback will be called with
the Bluetooth specialization and
the button value (1=pressed
and 0=not pressed)

GyroscopeSetup (onoff,
function[, dps=500 [, rate=25]])

When onoff is 1, will start to call
function at the preferred rate.

The dps (degrees per second) is
the precision of the gyroscope.
Allowed values are 125, 250,
500, 1000, and 2000

The rate is in callbacks per
second; the minimum value is
25 and the maximum is 3200

The callback function will be
called with the Bluetooth
specialization and the three
values, x, y and z.

LedConfig (led, high, low,
riseTime, highTime, fallTime,
pulseLength, repeat)

Configure a single channel of
the LED pattern.
Led is 0=green 1=red 2=blue

Guide to Using Best Calculator Page | 184

riseTime, highTime, fallTime
and pulseLength are all in
milliseconds
repeat is the number of times to
repeat the pattern.

LedOff() Turns off the LED without
deleting the pattern

LedOn() Plays the LED pattern

SetColor (r, g, b) Sets device color to the given
red, green and blue value.
This method will set the LED
pattern and turn the LED on.

TemperatureRead() Triggers a single temperature
read.

TemperatureSetup(onoff,fnc) When onoff is 1, sets up the fnc
callback when the temperature
is read. This will also trigger
one temperate reading.

The function (fnc) will be called
with the Bluetooth device and
with a temperature reading in
degrees Celsius.

Unlike the other sensors, you
will not get a series of
temperature callbacks. You
must call TemperatureRead() to
get a temperature value.

ToString() Prints out a little information
about your device.

The special MetaWear service is 326a9000-85cb-9195-d9dd-464cfbbae75a.

Commands are sent using characteristic 326a9001-85cb-9195-d9dd-

464cfbbae75a and data is read from characteristic 326a9006-85cb-9195-d9dd-

464cfbbae75a

The device supports all the regular Bluetooth services and characteristics.

Guide to Using Best Calculator Page | 185

1800 Generic Access: 2a00 (Name) defaults to “MetaWear”; 2a01 (Appearance)

defaults to Remote Control, 2a02 (Privacy) is False.

180a Device Info: 2a29 (Manufacturer. The value is MbientLab Inc

180f Battery Level: 2a19 (Power, but it always seems to be 100)

fff0: D (fff3=D Data In): [writable], (fff5=C Command Channel)

Example program: make a single reading of the temperature data

device = Bluetooth.PickDevicesName ("MetaWear")
IF (device.IsError)
 CLS RED
 PRINT "No MetaWear device found"
 PRINT device
 EXIT
END IF
meta = device.As ("MetaMotion")
IF (meta.IsError)
 CLS RED
 PRINT "Unable to connect to device"
 PRINT meta
END IF

CLS GREEN
PRINT "About my MetaWear device"
PRINT " "
PRINT "Name", meta.GetName()
PRINT "Man.", meta.GetManufacturerName()
PRINT "Power", meta.GetPower()
PRINT "Availble Methods", meta.Methods

The program first finds the generic Bluetooth device and creates the

specialization from the device. Then we can pull standard data from the device

like the device name, manufacturer name and current power level.

Guide to Using Best Calculator Page | 186

34.7 NOTTI DEVICE
The NOTTI device is a desktop device with a single

light that can be set to any color. You can also

program transitions and for colors changes to happen

at a time in the future. For full information, see the

Witti Design web site at http://www.wittidesign.com .

The Bluetooth PIN for pairing the device is 123456.

The default Windows name for the device is Notti; to

get all NOTTI devices call devices =

Bluetooth.DevicesName (“*Notti”)

To get the NOTTI specialization of a device, call Dotti

= device.As(“NOTTI”). The name is in upper case to conform to how the

manufacturer describes the device in their manual.

To list available methods, use Notti.Methods

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

GetPower() Gets the current battery power
of the device using service 180f
characteristic 2a19. The value is
not cached.

AlarmSetting (type, r, g, b,
advance)

Alarm settings. See
SetAlarmTime for when the
alarm will go off.
Type is 0=off 1=every day
2=once only
r, g, b is the color
advance is how many minutes
ahead of time to start changing.

http://www.wittidesign.com/

Guide to Using Best Calculator Page | 187

It’s a value between 1 and 10;
1=2.5 minutes and 10=25
minutes.

ChangeMode(mode) Sets the mode;
0=light on
1=light off
2=animation
The mode doesn’t seem to have
any obvious effect.

SetAlarmTime(h,m) Sets the time for the next alarm

SetColor (r, g, b) Sets device color to the given
red, green and blue value.

SetColorCustom(r1, g1, b1, r2,
g2, b2)

Sets the device color to animate
between color 1 (r1, g1, b1) and
color 2 (r2, g2, b2)

SetName (name) Sets the Bluetooth name of the
device as returned by service
1800 characteristic 2a00. The
name will be modified as
needed so that it ends with the
word “-Notti” (or is simply
Notti) to match the regular
NOTTI app.

Unlike the other NOTTI
commands, SetName uses
characteristic fff5, not fff3.

The Windows name of the
device may not change until the
device is reset and the re-
paired.

SetNameArbitrary(name) Like SetName, but the name
won’t be changed to end with “-
Notti”

SyncTime(h,m,s) Sets the time on your DOTTI
device.

ToString() Prints out a little information
about your DOTTI device.

Guide to Using Best Calculator Page | 188

The special NOTTI service is fff0. Most commands are sent using characteristics

fff3 except for the SET NAME command which uses characteristic fff5. By

sending command bytes to these characteristics, you can control the NOTTI

device.

The NOTTI device supports all the regular Bluetooth services and characteristics.

1800 Generic Access: 2a00 (Name) defaults to “Notti”; 2a01 (Appearance)

defaults to Unknown, 2a02 (Privacy) is False.

180a Device Info: 2a29 (Manufacturer, but the value is just “Manufacturer

name” instead of a specific value)

180f Battery Level: 2a19 (Power, but it always seems to be 100)

fff0: D (fff3=D Data In): [writable], (fff5=C Command Channel)

Guide to Using Best Calculator Page | 189

34.8 TI SENSORTAG 2541 (ORIGINAL VERSION)
The model 2541 SensorTag from Texas

Instruments is a small, battery-powered sensor

platform from TI. The sensors include an

accelerometer, gyroscope, IR contactless

thermometer, humidity sensor, magnetometer,

barometer and on-chip temperature sensor.

The pairing code is 0.

The default Windows name for the device starts

with SensorTag; to get all of the devices call devices =

Bluetooth.DevicesName (“SensorTag*”).

To get the specialization, call tag = device.As(“SensorTag2541”).

To list available methods, use tag.Methods

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

AccelerometerSetup(onoff,
period, callback)

callback (tag, x, y, z)

Sets the accelerometer to on (1)
or off (0); if on, then also sets
the period. The callback is the
name of the function to be
called when the accelerometer
data changes.
The period is in 1/100s of a
second.
The x, y and z values are in “g”
values and range +/-2.

BarometerSetup(onoff, period,
callback)

Sets the barometer to on (1) or
off (0). If on, also sets the
period. The callback is the

Guide to Using Best Calculator Page | 190

callback (tag, temp, pressure) name of the function to be
called with the data changes.
The period is in 1/100s of a
second; minimum value 10=100
ms.
The temp is in degrees C.
The pressure is in hectoPascal.

ButtonSetup(onoff, callback)

callback (tag, left, right, side)

Sets the Buttons to on or off.
The callback is the name of the
function to be called when the
button data changes.

GyroscopeSetup (axis, period,
callback)

callback (tag, x, y, z)

Sets the gyroscope to on (1 to 7)
or off (0). The value says which
axis to enable; 7 means x, y and
z. If on, also sets the period.
The callback is the name of the
function to be called with the
data changes.
The period is in 1/100s of a
second; minimum value 10=100
ms.

HumiditySetup (onoff, period,
callback)

callback (tag, temp, humidity)

Sets the humidity sensor to on
(1) or off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second; minimum value 10=100
ms.
The temp is in degrees C.
The humidity is relative
humidity from 0 to 100.

IRSetup (onoff, period, callback)

callback (tag, ambient, object)

Sets the IR sensor to on (1) or
off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second.

Guide to Using Best Calculator Page | 191

Two temperatures are returned:
the ambient (air) temperature
and the contactless (object)
temperature. Temperature is in
degrees C.

MagnetometerSetup (axis,
period, callback)

callback (tag, x, y, z)

Sets the magnetometer to on
(1) or off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second; minimum value 10=100
ms.

ToString() Prints out a little information
about your device.

Example program

devices = Bluetooth.DevicesNames (“SensorTag”)
FOR i=1 TO devices.Count
 device = devices.Get(i)
 tag = device.As(“SensorTag2541”)
 tag.AccSetup(1, 100, “Acc”)
NEXT i

FUNCTION Acc(tag, x, y, z)
 PRINT AT 1,1 x, y, z
END

There are a number of sample programs in BC BASIC provided to demonstrate

using the TI SensorTag.

Guide to Using Best Calculator Page | 192

34.9 TI SENSORTAG 1350 (2016 VERSION)
The model 1350 SensorTag from Texas Instruments

is a small, battery-powered sensor platform from TI.

The sensors include an accelerometer, gyroscope, IR

contactless thermometer, humidity sensor,

magnetometer, barometer and on-chip temperature

sensor.

No pairing code is needed. It will only pair with the most recent versions of

Windows; it will not pair with the original Windows 10 or earlier operating

systems.

The default Windows name for the device includes the word SensorTag; to get

all of the devices call devices = Bluetooth.DevicesName (“CC1350

SensorTag*, SensorTag 2.0”).

To get the specialization, call tag = device.As(“SensorTag1350”).

To list available methods, use tag.Methods

The specialization includes the following methods

Method Description

GetName() Gets the Bluetooth name of the
device using service 1800
characteristic 2a00. The value is
not cached and might not be
the same as the Windows name
for the device from
device.Name.

GetPower() Gets the current battery power
of the device using service 180f
characteristic 2a19. The value is
not cached.

AccelerometerSetup(onoff,
period, callback)

callback (tag, ax, ay, az, mx, my,
mz, rx, ry, rz)

Sets the accelerometer to on or
off (0); if on, then also sets the
period. The callback is the
name of the function to be
called when the accelerometer
data changes.

Guide to Using Best Calculator Page | 193

See below for the
accelerometer on value.

The period is in 1/100s of a
second.

The callback function returns
the tag and three sets of X, Y, Z
data. Accelerometer values are
in “g” values. Magnetometer
values are in micro-Tesla.
Rotation (Gyroscope) values are
in rotation degrees per second.

BarometerSetup(onoff, period,
callback)

callback (tag, temp, pressure)

Sets the barometer to on (1) or
off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second; minimum value 10=100
ms.
The temp is in degrees C.
The pressure is in hectoPascal.

ButtonSetup(onoff, callback)

callback (tag, left, right, side)

Sets the Buttons to on or off.
The callback is the name of the
function to be called when the
button data changes.

HumiditySetup (onoff, period,
callback)

callback (tag, temp, humidity)

Sets the humidity sensor to on
(1) or off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second; minimum value 10=100
ms.
The temp is in degrees C.
The humidity is relative
humidity from 0 to 100.

IO (value) Turns the device LEDs and
buzzer on or off. The value is a

Guide to Using Best Calculator Page | 194

bit-field, so each time you call
this the on/off status of each
device is updated.
 1=RED on
 2=GREEN on
 4=BUZZER on
 0=all off
The 1350 includes only a red
LED; the 2650 has both a red
and green LED.

IRSetup (onoff, period, callback)

callback (tag, ambient, object)

Sets the IR sensor to on (1) or
off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second.
Two temperatures are returned:
the ambient (air) temperature
and the contactless (object)
temperature. Temperature is in
degrees C.

OpticalSetup (onoff, period,
callback)

callback (tag, lux)

Sets the light sensor to on (1) or
off (0). If on, also sets the
period. The callback is the
name of the function to be
called with the data changes.
The period is in 1/100s of a
second
The callback returns the tag and
the light level in lux.

ToString() Prints out a little information
about your device.

The Accelerometer On value

The accelerometer On value is a complex. It’s a bit field of the different sensors

that you wish to enable. In general, the more sensors that are on, the more

power the device takes.

Guide to Using Best Calculator Page | 195

1=Gyro Z axis
2=Gyro Y axis
4=Gyro X axis
7=Gyro all axis

8=Accel. X axis
16=Accel Y axis
32=Accel Z axis
56=Accel all axis

64=Magnetometer (all)
(the Magnetometer
does not allow you to
turn on just one axis)

128=enable Wake-on-
motion

0=Accel range is 2G
256=Accel range is 4G
512=Accel range is 8G
768=Accel range is 16G

For example, to turn on all of the sensors and set the accelerometer to a 2G

range, add all of the gyro, accel axis and magnetometer values together:

127=1+2+4+8+16+32+64.

Example program

device = Bluetooth.PickDevicesName ↲
 (“CC1350 SensorTag,SensorTag 2.0”)
IF (device.IsError)
 PRINT "No device was picked"
ELSE
 tag = device.As(“SensorTag1350”)
 PRINT AT 7,1 "SETUP", tag.ButtonSetup(1, “Button”)

 FOR time = 1 TO 30
 PAUSE 50
 PRINT AT 3,1 "TIME", time
 NEXT time

 PRINT AT 8,1 "CLOSE", tag.ButtonSetup(0, "Button")
END IF

FUNCTION Button(tag, left, right, side)
 Screen.ClearLine(1)
 IF (left) THEN PRINT AT 1,1 "LEFT"
 IF (right) THEN PRINT AT 1,8 "RIGHT"
 IF (side) THEN PRINT AT 1,16 "SIDE"
END

There are a number of sample programs in BC BASIC provided to demonstrate

using the TI SensorTag. In addition to the simple samples, there’s a fully-worked

out Weather Station sample.

Guide to Using Best Calculator Page | 196

Guide to Using Best Calculator Page | 197

35 COMPLETE EXAMPLES

These example programs aren’t just a dump of some code. They include

explanations of how the different parts of the program work so that you can

learn from them, understand them, and modify them to suite your needs.

35.1 CONNECTING TO MICROSOFT FLOW
Microsoft Flow is a cloud-based utility that performs actions (like sending email)

based on triggers. This lets you automate your work flows. The cloud service is

available at http://flow.microsoft.com

You can trigger your flows from Best Calculator using the Http.Post method on

the Http specialization. There is a good blog post explaining how to trigger

actions from an application at https://flow.microsoft.com/en-us/blog/call-flow-

restapi/

Three key “gotcha’s” for Microsoft Flow: the flow trigger type is a Request flow

and not the “http” triggers. You have to specify a Content-Type:

application/json header when you POST your data; otherwise your data will be

silently ignored. Lastly, to send email use the Outlook.com service, not the

Office 365 Outlook service.

In this example temperature data from a MetaMotion device will be uploaded

to Microsoft Flow and will cause an email to be sent. Only out-of-range data

will be sent.

There are two big steps: you need to set up Microsoft Flow to accept your data

(this is done through their web portal). And you need to make a little BC BASIC

program that can trigger the flow.

35.1.1 Set up the flow at Microsoft Flow

Your first step is to decide only your data format; you will need to provide your

data schema when you create the flow. The data schema can be generated at

http://flow.microsoft.com/
https://flow.microsoft.com/en-us/blog/call-flow-restapi/
https://flow.microsoft.com/en-us/blog/call-flow-restapi/

Guide to Using Best Calculator Page | 198

http://jsonschema.net . In this example I picked a simple data-logging schema;

example data and the resulting schema look like this

Example JSON data Resulting Schema
{
 "data": 82.3,
 "time": "2017-03-26 3:23:45.2",
 "device": "outside #2",
 "sensor": "temperature",
 "min": 70,
 "max": 80
}

{"$schema": "http://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "http://example.com/example.json",
"properties": {
"data": {"id": "/properties/data", "type": "number"},
"device": {"id": "/properties/device", "type": "string"},
"max": {"id": "/properties/max", "type": "integer"},
"min": {"id": "/properties/min", "type": "integer"},
"sensor": {"id": "/properties/sensor", "type": "string"},
"time": {"id": "/properties/time", "type": "string"}
},
"type": "object"
}

To create a flow at flow.microsoft.com, and after you’ve signed up and are

logged in:

1. Click “Create from blank” to make a new flow

2. In the search box, enter “Request” and paste the schema into the

request body

3. Click “Add an action” to add the “sending an email” action. Select

Outlook.Com as the service and Send an Email as the action.

Surprisingly, I had to use the “Outlook.com” service, not the “Office 365

Outlook” service; I don’t know what the difference is, but one of them

blocked me.

http://jsonschema.net/

Guide to Using Best Calculator Page | 199

Now go back to the Request part of the flow. It will include a URL that you will

be POSTing data to; this URL is automatically generated by the Flow service and

will be monitored by them for data.

35.1.2 Write the BC BASIC program

The sample code has to:

1. Set up a URL to point to Microsoft Flow. Because these URLs are not

intended for publication, the URL is stored in a named Memory cell; that

way it’s easily set and available to the program but it’s not printed out

in the listing.

2. Set up the monitoring value. The example is intended to show how you

can monitor a value, so there are min and max values set up along with

strings that describe the data.

3. Set up the sensor device. This example gathers data from the Mbient

Labs MetaWear MetaMotion device, and in particular gathers

temperature data. The MetaMotion device temperature sensor only

sends data when it’s poked (it doesn’t provide a stream of updates)

4. Main loop to read the temperature data.

5. Temperature function is the callback function that will be called when

the temperature data changes. You have to tell BC BASIC that this is a

callback; it was done in part 3

meta.TemperatureSetup(1, "Temperature")

when the sensor device was set up.

6. SendData is called from the callback function when the readings are

beyond the min and max values. SendData actually uploads data to the

flow.microsoft.com site and is processed there.

SendData converts the raw data values into a correctly-formatted JSON

value. This is made easy with String.Escape(“json”, list) method; that

method takes an array of name/value pairs. You can fill in the

name/value pairs with AddRow() method.

SetData also has to fill in a header value with a Content-

Type:application/json header. Without this header, the JSON value will

not be accepted by Microsoft Flow.

Guide to Using Best Calculator Page | 200

CLS BLUE

REM
REM The Microsoft Flow trigger URL is stored in the
memory area
REM
memory = "Microsoft.Flow Example URL"
url = Memory.GetOrDefault (memory, "")
url = INPUT DEFAULT url PROMPT "Microsoft Flow URL"
Memory[memory] = url

REM
REM Set up the constant monitoring values
REM
min = 30
max = 40
deviceName = "My device"
sensor = "temperature"

REM
REM Set up the sensor device.
REM This program uses data from the MetaWear device
REM
device = Bluetooth.PickDevicesName (“MetaWear”)
IF device.IsError
 CLS RED
 PRINT "No device picked"
 STOP
END IF
meta = device.As ("MetaMotion")
meta.TemperatureSetup(1, "Temperature")

REM
REM Main loop; will keep on spinning and
REM asking for updated temperature readings.
REM
ExitRequested = 0
MAXTIME=1000
FOR time=0 TO MAXTIME
 PAUSE 50
 meta.TemperatureRead()
 IF (ExitRequested > 0) THEN time = MAXTIME
NEXT time

REM
REM Callback when temperature changes
REM
FUNCTION Temperature(ble, celcius)

Guide to Using Best Calculator Page | 201

 GLOBAL url
 GLOBAL deviceName
 GLOBAL sensor
 GLOBAL min
 GLOBAL max

 time = DateTime.GetNow()
 REM Convert to Fahrenheit
 data = celcius * 9 / 5 + 32

 Screen.ClearLine (9)
 Screen.ClearLine (10)
 Screen.ClearLine (11)
 PRINT AT 9,2 "TIME", time.Time
 PRINT AT 10,2 "TEMP", data

 IF (data < min OR data > max)
 PRINT AT 11,1 "SENDING DATA"
 SendData (url, data, time, deviceName, sensor, min,
max)
 GLOBAL ExitRequested
 ExitRequested = 1
 END IF
END

REM
REM Format and send data to Microsoft Flow
REM
FUNCTION SendData(url, data, time, deviceName, sensor,
min, max)
 REM
 REM Put the data into correct JSON form
 REM
 DIM datalist()
 datalist.AddRow ("data", data)
 datalist.AddRow ("time", time)
 datalist.AddRow ("device", deviceName)
 datalist.AddRow ("sensor", sensor)
 datalist.AddRow ("min", min)
 datalist.AddRow ("max", max)
 json = String.Escape ("json", datalist)

 PRINT json

 REM Microsoft Flow needs a header
 REM Content-Type of application/json.
 DIM header()
 header[1] = "Content-Type: application/json"
 result = Http.Post (url, json, header)

Guide to Using Best Calculator Page | 202

RETURN result

35.2 HIKING WITH AN ALTIMETER
A big part of the fun of supporting devices like the Metawear is writing

programs that do exactly what you want. When you hike with an altimeter, you

can watch as you gain or lose altitude; it gives you a greater appreciation for the

ups and downs of your trip.

These programs take the raw altimeter data from a MetaWear, convert it to

feet, and adjust the height based on a “tare” (starting value), and then either

just displays an instant result or graphs your entire trip.

35.2.1 The Graph program

The Graph program shows you two graphs: the top graph is a trace of your

altitude for the last several minutes. The bottom graph is a summary of your

altitude since your hike began.

Note: white and black were swapped on this graph for nicer printing.

The Current Height graph is “bumpy”: it contains the last 100 altitude

measurements. The Height History graph is smoother because it’s covering a

wider set of altitudes and because it’s a summarized history of the altitude.

Guide to Using Best Calculator Page | 203

This is a more complex version of the simpler Altitude program. Some points to

note:

- This program uses the Automatic Graph feature of BC BASIC. This

feature will automatically graph data from an array; you can update the

array and the graph will be automatically updated. The currGraph and

fullGraph are created and initialized from the currData and fullData

arrays.

- The program also uses the MaxCount feature of the data arrays. We

don’t want the data arrays to grow infinitely. When you call data.Add()

on an array with MaxCount set, the array will automatically remove

data. For the currData array, the earlier data is remove (the

data.RemoveAlgorithm is set to “First”). For the fullData array, a

summary of all data is maintained using random Reservoir Sampling (the

data.RemoveAlgorithm is set to “Random”). The fullData array is up to

200 elements long and has a reasonable summary of the entire data set.

- To make the graphs look a little nice, the min and max values of the

array are printed on the screen. The screen is adjusted to fit onto a

Lumia 650 phone.

REM
CLS BLUE
PRINT "Looking for a MetaWear.."
devices = Bluetooth.DevicesName (“MetaWear”)
IF (devices.Count < 1)
 CLS RED
 PRINT "ERROR: no MetaWear devices found"
END IF
CLS BLACK

device = devices[1]
meta = device.As ("MetaMotion")

REM The program will stop when this is set to > 0
exitRequested = 0

REM Set up the curr and full data arrays and graph
DIM currData()
currData.MaxCount = 100
currData.RemoveAlgorithm = "First"

currGraph = Screen.Graphics()
currGraph.Title = "Current Height"
currGraph.SetPosition (60,60)

Guide to Using Best Calculator Page | 204

currGraph.SetSize(100, 275)
currGraph.GraphY(currData)

DIM fullData()
fullData.MaxCount = 200
fullData.RemoveAlgorithm = "Random"

fullGraph = Screen.Graphics()
fullGraph.Title = "Height History"
fullGraph.SetPosition (60,185)
fullGraph.SetSize(100, 275)
fullGraph.GraphY(fullData)

REM
REM Set up the altimeter
REM
meta.AltimeterSetup (1, "Altitude", 0.5)
meta.ButtonSetup (1, "Button")

REM
REM Main loop
REM
Screen.RequestActive()

10 REM LOOP_TOP

 IF (exitRequested > 0) THEN GOTO 20
 PAUSE 60
 dt = DateTime.GetNow()
 Screen.ClearLine (1)
 PRINT AT 1, 1 "TIME", dt.Time

GOTO 10
20 REM LOOP_BOTTOM

REM
REM All done; undo the setup
REM
Screen.RequestRrlease()

msg="done!"
meta.AltimeterSetup (0, "Altitude", 0.5)
meta.ButtonSetup (0, "Button")

REM
REM Altitude is called whenever altitude data comes in.
REM
FUNCTION Altitude(meta, height)

Guide to Using Best Calculator Page | 205

 REM The main loop only exits about once per minute.
When the
 REM user presses the button to exit, they don't want to
see the
 REM graph keep on updating.
 GLOBAL exitRequested
 IF (exitRequested > 0) THEN RETURN

 REM the meter-->feet conversion was copied from
Bing.
 currentRawAltitudeInFeet = height * 3.2808399
 currentHeightInFeet = currentRawAltitudeInFeet -
Memory.AltitudeTare

 REM
 REM Just Add'ing data to the arrays and doing a PAUSE
 REM will upate the graphs on the screen.
 REM
 GLOBAL currData
 GLOBAL fullData
 currData.Add (currentHeightInFeet)
 fullData.Add (currentHeightInFeet)
 PAUSE 1

 REM
 REM Display some basis data on the screen.
 REM
 Screen.ClearLine (2)
 Screen.ClearLine (3)
 Screen.ClearLine (6)
 Screen.ClearLine (8)
 Screen.ClearLine (12)

 PRINT AT 2,1 "Current", Math.Round
(currentHeightInFeet, 1)
 PRINT AT 3,1 Math.Round(currData.Max)
 PRINT AT 6,1 Math.Round(currData.Min)
 PRINT AT 8,1 Math.Round(fullData.Max)
 PRINT AT 12,1 Math.Round(fullData.Min)

END

FUNCTION Button(meta, value)
 GLOBAL exitRequested
 IF (value = 1) THEN exitRequested = 1
END

Guide to Using Best Calculator Page | 206

35.2.2 The Altitude program

The altitude program tells you, as quickly as possible, your current height. It

assumes that you have only one Metawear sensor, so you don’t need to pick it

from a list. And it doesn’t stay on; it gets a reading and then shuts down.

The entire altitude program has four sections. The first section picks an

MetaWear device and sets it up to call a function called “Altitude” when the

altitude data changes. The second section is the main loop; since the altitude

data is sent to the Altitude function, we have to wait until some data shows up.

The third section cleans up and tells the MetaWear to stop sending altitude

data. This is important because otherwise it will waste its battery power

sending data that you aren’t listening to. The last section has the two functions

Altimeter and Button. The Altimeter function converts the data to feet and

display it. The Button function simply sets a global variable exitRequested; it’s a

quick way to exit the main loop.

REM
CLS GREEN
devices = Bluetooth.DevicesName (“MetaWear”)
IF (devices.Count < 1)
 CLS RED
 PRINT "ERROR: no MetaWear devices found"
END IF

device = devices[1]
meta = device.As ("MetaMotion")

meta.AltimeterSetup (1, "Altitude", 0.5)
meta.ButtonSetup (1, "Button")

REM
REM The main loop. It will just go around a few
REM times and then exit.
REM
MAXTIME = 3
FOR time = 1 TO MAXTIME
 IF (exitRequested > 0) THEN time = MAXTIME
 PAUSE 60
 dt = DateTime.GetNow()
 Screen.ClearLine (1)
 PRINT AT 1, 1 "TIME", dt.Time
NEXT time

msg="done!"

Guide to Using Best Calculator Page | 207

meta.AltimeterSetup (0, "Altitude", 0.5)
meta.ButtonSetup (0, "Button")

REM called when new Altimeter data comes in.
FUNCTION Altitude(meta, height)
 currentRawAltitudeInFeet = height * 3.2808399
 currentHeightInFeet = currentRawAltitudeInFeet -
Memory.AltitudeTare
 PRINT AT 3,1 "Current", Math.Round
(currentHeightInFeet, 1)
END

FUNCTION Button(meta, value)
 GLOBAL exitRequested
 IF (value = 1) THEN exitRequested = 1
END

35.2.3 The TARE program

The Tare program reads the current altimeter data and asks you for your actual

height. The difference is put into a named memory cell (“AltimeterTare”). This

initializes your altimeter zero point; the other programs will use the ‘tare’ value

to adjust the raw altimeter data into your actual height.

From Wiktionary: the Tare includes this definition:

Verb (sciences) To set a zero value on an instrument (usually

a balance) that discounts the starting point.

I’m using tare in the scientific sense: it’s the zero value of the altimeter.

The air pressure constantly changes during the day. You’ll see that at the end of

the hike, when you’re back at your original location, that the height is now “off”.

That’s because the air pressure has changed during your hike. The height

reported by the altimeter can be very different from your actual height.

REM
devices = Bluetooth.DevicesName (“MetaWear”)
IF (devices.Count < 1)
 CLS RED
 PRINT "ERROR: no MetaWear devices found"
END IF

Guide to Using Best Calculator Page | 208

device = devices[1]
meta = device.As ("MetaMotion")

currentHeightInFeet = INPUT DEFAULT 203 PROMPT
"What is your elevation in feet?"
exitRequested = 0
meta.AltimeterSetup (1, "Tare", 0.5)

REM Wait for a callback
MAXTIME = 100
FOR time = 1 TO MAXTIME
 IF (exitRequested) THEN time = MAXTIME
 PAUSE 60
 PRINT AT 2, 1 "TIME", time
NEXT time

IF (time = MAXTIME)
 PAPER RED
 PRINT "Sorry, could not get the elevation"
ELSE
 PAPER GREEN
 PRINT "Adjust", Memory.AltitudeTare
END IF

result = Memory.AltitudeTare

FUNCTION Tare(meta, height)
 GLOBAL currentHeightInFeet
 REM Pasted from BING
 currentRawAltitudeInFeet = height * 3.2808399
 Memory.AltitudeTare = currentRawAltitudeInFeet -
currentHeightInFeet
 PRINT AT 3,1 "Got an altitude"
 PRINT AT 4,1 "Current", currentHeightInFeet
 PRINT AT 5,1 "Raw", currentRawAltitudeInFeet
 PRINT AT 6,1 "Adjust", Memory.AltitudeTare
 GLOBAL exitRequested
 exitRequested = 1
END

Guide to Using Best Calculator Page | 209

36 GRAPHICS AND BC BASIC

BC BASIC has two ways to print to the screen. The main way is the PRINT and

CLS and PAPER commands; they print to the “Fixed-character” screen. The

CONSOLE and DUMP commands write to the console.

In addition, there are graphics available through the Screen.Graphics extension.

In the example, the area of the screen in blue with large type is the fixed-

character screen. It’s called that because each character prints at the same

width. This lets you make tables and diagrams more easily.

Underneath is the console. The primary use of the console is debugging.

Normally the console is not visible.

Guide to Using Best Calculator Page | 210

36.1 FIXED CHARACTER SCREEN COMMANDS
PRINT [AT line, column] <expression>

A comma between expressions will print each expression at 16-character

positions

Simple example:

CLS BLUE
R = 1
10 PRINT AT R, 2*R R
R = R + 1
IF (R < 20) THEN GOTO 10

The following output is produced:

Guide to Using Best Calculator Page | 211

Example that prints circles on the screen:

REM
REM PLOT 3 CIRCLES
REM

CHAR = 1
R = 8
CX = 15
CY = 12
GOSUB 1000

CHAR = 2
R=5
GOSUB 1000

CHAR=3
R=13
CX=30
CY=15
GOSUB 1000

STOP

1000 REM DO A CIRCLE USING CHAR R CX AND CY
S = 0
1010 REM TOP OF LOOP
COL = R * SIN(S) + CX
ROW = R * COS(S) + CY
PRINT AT ROW,COL CHAR
S = S + 0.05
IF (S < 7) THEN GOTO 1010
RETURN

Guide to Using Best Calculator Page | 212

The circle program makes this output

36.2 CONSOLE COMMANDS
The console commands work on the console, a scrolling list of small-font output.

The primary console commands are CONSOLE (writes to the console), DUMP

(writes the name and value of all of the BC BASIC variables to the console) and

the CLS and PAPER commands (which clear and possible change the color).

Example of using CLS to clear the screen and change the color:

CLS YELLOW

37 USING THE LIBRARY, STEP BY STEP

Once you have written a simple program, you might want to write more

programs, and keep them all. BC BASIC includes simple Library

functionality to keep all your programs. The Library also includes a

series of sample programs for you to use.

Guide to Using Best Calculator Page | 213

In this first example, we’ll write a simple program to convert square feet

to acres. The steps are listed in the diagram and will be described in

detail in each section.

Add a new
package for

your
programs

Add a new
program to

your
package

Edit the
program to

do the
conversion

Run the
program to

test it

Bind the
program to

a key

Guide to Using Best Calculator Page | 214

37.1 ADD A NEW PACKAGE FOR YOUR PROGRAM

In this example, you will create a new program. First you need to select

a package to put your program in.

Press the BC BASIC key and select Library. The Library of Packages

screen will pop up. A package is a bundle of individual programs; you’re

going to make a single new package that contains a simple program.

The program will convert from square feet to acres.

First, you need to make the package that your programs will be part of.

Tap the + key to add a new package. A new package will be created with

a default name of “New Package”.

After you’ve written more programs and want to create more packages,

you’ll probably want to rename this package. Do that by tapping the

package’s GEAR key (). Then change the name and description.

The changes take place right away. Tap the BACK ARROW to get back to

the list of packages.

Guide to Using Best Calculator Page | 215

37.2 ADD A NEW PROGRAM TO YOUR PACKAGE
Your new package is now ready for you to add your new program. Tap

the package to see the list of programs in the package, and then tap the

+ to add a new program. It will be given the name NewProgram . It’s

also got a description and some code.

Tap the program’s GEAR () key to bring up the About this program

screen.

Change the name to “Square Feet to Acres” and the description to

“Converts the current value in the calculator from square feet to acres”.

You don’t have to do anything special to save the name and description;

they are saved automatically when your program is saved.

You can also set the key label value. If you bind a program to a

programmable key, this string will be displayed. Set it now to

“FT>ACRE”. The string has to be short to fit onto a key.

37.3 EDIT THE PROGRAM TO DO THE CONVERSION
To get to the edit screen, you can either tap the EDIT key at the bottom

of the About this program screen, or you can tap the BACK ARROW key

to get back to the Programs list and then tap the program’s EDIT key.

Guide to Using Best Calculator Page | 216

The program starts out with a sort of mini-sample. You’ll be deleting

the mini-sample code and replacing it with your own.

Most conversion programs follow the same pattern:

1. Get a number from the calculator display. This is the number of

square feet.

2. Multiple or divide it to get the new value. To convert square

feet to acres, just divide by 43560.

3. Output a string to the calculator display to say what we’ve done

4. Return the numeric value so it’s set into the calculator

The program to do these is:

value = Calculator.Value
newValue = value / 43560
Calculator.Message = “Converted ”+ value ↲

+ “ square feet to acres”
STOP newValue

Each line corresponds to one of our steps. Enter this code into the

program area.

Guide to Using Best Calculator Page | 217

37.4 RUN THE PROGRAM TO TEST IT
Before we run the program, we need to have a “known good”

conversion. Type “Convert 10000 square feet to acres” into a web

search; it should tell you that 10000 square feet is 0.229568 acres.

To test the program, tap the Calculator key; this dismisses the BC BASIC

programming area and pops up the calculator. Type in the starting

value of 10000.

Now tap the BC BASIC key. The BC BASIC programming area pops up

again, right where you were. Tap the RUN key to run the program. Your

program is automatically saved when you run the program. You can

also press the F5 key to run your program.

When you run the program from the editor, it will show a dialog box

with the results. It’s not displayed when you bind the program to a key.

Tap the Calculator key again to see the calculator. You should see this:

The program works! It’s done the conversion, and reminded you of

what exactly it did.

Guide to Using Best Calculator Page | 218

37.5 BIND THE PROGRAM TO A KEY
Now we’re going to bind the program to one of the programmable keys

on the calculator. They are the ones marked P1 to P4. Best Calculator

comes with these keys already programmed to some common tasks.

In any of the programming dialogs, tap the BIND key (); it’s the one

in the upper-right corner. It brings up the binding dialog.

To bind a key, you first pick the key to bind, the package and program to

bind to, and then press save. You can also set what the key should say.

The first question is What key do you want to bind to? Tap one of the

keys in the key list (labeled P1, P2, P3 and so on) to pick a key to bind to.

People often just pick key P1. The key list tells you what package and

program the key is currently bound to. This helps you pick the right key

to use.

The second question is What package is the program in? All the

possible packages are listed. As you tap on a package, the next list

changes to show the programs in that package. Tap on New Package to

pick your new package. If you’ve change the name of the package, pick

the new name.

Guide to Using Best Calculator Page | 219

The third question is What program do you want to run? Tap Square

feet to acres to select your new program.

You can optionally set the label of the key. The default value is set from

the “Key Label” value when you update the program data (the “About

this program” screen). You should have already set it to FT>ACRE.

Lastly, be sure to tap the SAVE key (). Your selection isn’t saved

until you press save.

Now verify that the key works how it should. Tap the Calculator key to

see the calculator again. Now enter a value into the calculator. You

might want to enter 10000 since you already know how many acres it is.

Now press the key you bound (probably the P1 key). The value in the

calculator screen should be replaced with 0.229568 (and there is a

message that it just converted 10000 square feet to acres).

37.6 NEXT STEPS
Now you’ve seen the dialogs and screens that you need to use to create

a BC BASIC program. Your next step is to try it! Pick a problem that you

have where you work, at home, for your hobby, or your schoolwork.

Conversion programs are often a great way to start; lots of times you

have to convert one value to another.

If you need to make a conversion program, take a look at the code in

the Astronomy package. It demonstrates a more advanced way how to

make a single central library program that handles lots of conversions.

Or you can just write each one just like you did this one.

Sometimes you have to enter several numbers. The Arc Length program

shows how you can prompt the user for several values. The Money

Conversion program in the Quick Samples library shows how you can

ask the user for input and remember the last value entered. By setting

a default value for the value to be entered, you can really make your

work flow go faster.

Guide to Using Best Calculator Page | 220

38 APPENDIX: RELEASE NOTES

New in the Spring 2017 version of Best Calculator and Best Calculator,

IOT Version

You can now place FOR … NEXT loops inside of compound IF

statements. Before these loops would not work correctly.

The Array object (made via a DIM statement) now includes new

methods for making one and two-dimensional arrays and for dealing

with data sampling.

- The AddRow method is an easy way to make an array-of-array;

it helps create valid JSON strings from data.

- The Add() method adds to an array but will sample (or not)

based on the MaxCount and RemoveAlgorithm values

There is a new DateTime extension that lets you create time stamps.

This is especially useful when creating data from IOT sensors.

There is a new File extension that lets you read and write files. This is

only available in the IOT edition.

There is a new Screen.Graphics() that lets you create draw lines,

rectangles and circles on the screen. It includes a simple automatic

graph capability for quickly making data graphs.

There is a new Html extension that lets you read and write data to the

Internet. This is only available in the IOT edition.

The Math.Round() function can now take two parameters. The second

parameter say how many decimal places to produce a result at.

The Memory extension now lets you save and restore string

There is a new String extension to parse and escape strings in common

Internet formats like CSV and JSON.

There are new Bluetooth specializations for the BBC MicroBit, Mbient

Labs devices and the TI SensorTag 1350.

Guide to Using Best Calculator Page | 221

39 APPENDIX: SAMPLE PROGRAMS

This appendix includes many of the sample programs that come with

Best Calculator and Best Calculator, IOT Edition. You can use these

sample to help create your own program and understand how different

Bluetooth devices are programed.

All of the packages that start with BT: require the Bluetooth capabilities

of Best Calculator, IOT Edition.

All of the packages that start with EX: work with all the BC Basic that’s

included in all recent Best Calculator editions.

39.1 BT: AN OVERVIEW OF BLUETOOTH
Introduces Bluetooth programming. Call the Bluetooth.Devices()

method to get a list of paired Bluetooth devices for a system. For each

individual device, you can get the name or you can make Bluetooth calls

into individual devices. The device.Init() call is needed to get real

Bluetooth device data.

39.1.1 List Bluetooth devices

Call the Bluetooth.Devices() method to get a list of paired Bleutooth

devices. For each device in the list you can get the name even without

call the device.Init() method. The list.Count property is the way to get

the length of the list.

CLS BLUE

PRINT "Available Bluetooth devices"

devices = Bluetooth.Devices ()

FOR i = 1 TO devices.Count

 device = devices.Get(i)

 PRINT “NAME”, device.Name

NEXT i

Guide to Using Best Calculator Page | 222

n = devices.Count

PRINT " "

PRINT "" + n + " devices were found"

39.1.2 Pick a Bluetooth device
The Bluetooth.PickDevicesName(<name pattern>) method lets the user

select a single Bluetooth device from a matching list.

CLS BLUE

PRINT "PickDevicesName lets the user select"

PRINT "a single Bluetooth device from a list"

PRINT " "

device = Bluetooth.PickDevicesName("*")

IF (device.IsError)

 PRINT "Sorry, no device was picked"

ELSE

 PRINT "Device ";device.Name;" was picked!"

 PRINT device.Properties

END IF

39.1.3 Power
Get real data from each Bluetooth device using the raw Bluetooth read

commands. This program builds on the List program: each device is

initialized with the device.Init() call. Once initialized, standard Power

data is retrieved from each device. There are two types of reads: cached

reads (like device.ReadRawByte) are faster because they use the data

that the operating already knows. The raw reads will use the Bluetooth

radio and will ask the device for data. Each raw call gets the most up to

date data (but will be slower).

CLS BLUE

PRINT "Read Bluetooth Power"

REM

REM How many Bluetooth devices are available?

Guide to Using Best Calculator Page | 223

REM

devices = Bluetooth.Devices ()

FOR i = 1 TO devices.Count

 device = devices.Get(i)

 PRINT “NAME”, device.Name

 GetPowerInfo(device)

NEXT i

REM Get power data using the RAW bluetooth routines

FUNCTION GetPowerInfo(bt)

 PRINT "Init", bt.Init()

 PRINT “POWER”, bt.ReadRawByte(“180f”, “2a19”)

 PRINT “CACHE”, bt.ReadCachedByte(“180f”, “2a19”)

 PRINT “BLE_Name”, bt.BLE_Name

END

39.2 BT: BBC MICROBIT
Demonstrates how to use the BBC micro:bit device. The micro_bit is a

small, battery-powered computer, programmable in Python and other

languages; it can be configured to send data over Bluetooth. The

sensors include an accelerometer, magnetometer, temperature sensor.

It also includes buttons for input, can control IO pins directly and has a

5x5 LED output that can be set as a bitmap or can have scrolling text.

39.2.1 Accelerometer

Demonstrates the basics of the AccelometerSetup and using a callback

routine. The callback routine will be called with the device and an X, Y

and Z acceleration values. The units are in terms of G, where 1.0 is

normal gravity.

CLS BLUE

PRINT AT 5,1 "Demonstrate micro:bit Accelerometer"

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

Guide to Using Best Calculator Page | 224

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 6,1 "Got a device", device.Name

 REM 1=turn on the on-device accelerometer

 REM 20=accelerometer update speed (in milliseconds)

 period = INPUT DEFAULT 100 PROMPT "Period (in millisecond) 1, 2,

5, 10, 20, 80, 160 and 640"

 PRINT AT 7,1 "SETUP", tag.AccelerometerSetup(1, period,

“Accelerometer”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The Accelerometer routine will

 REM be called with updates.

 FOR time = 1 TO 10

 Screen.ClearLine(3)

 PRINT "TIME", time

 PAUSE 50

 NEXT time

 PRINT AT 9, 1 "FINISH", status

 tag.AccelerometerSetup(0, period, "Accelerometer")

END IF

FUNCTION Accelerometer(tag, x, y, z)

 Screen.ClearLine(1)

 PRINT x, y, z

END

39.2.2 Button
The micro:bit includes two buttons, A and B. This program

demonstrates how to set up a callback routine that will be called with

the state of either the A or B button changes.

Guide to Using Best Calculator Page | 225

CLS BLUE

PRINT AT 5,1 "Demonstrate microbit Buttons"

PRINT AT 6,1 "Count", devices.Count

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 7,1 "SETUP", tag.ButtonSetup(1, “Button”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.ButtonSetup(0, "Button")

END IF

FUNCTION Button(tag, A, B)

 Screen.ClearLine(1)

 IF (A) THEN PRINT AT 1,1 "A"

 IF (B) THEN PRINT AT 1,8 "B"

END

39.2.3 Compass
Demonstrates the basics of the CompassSetup and using a callback

routine. The micro:bit, in addition to the raw magnetometer data also

includes an easy way to get a magnetic compass heading. The callback

will be called with the device and with the heading in degrees where 0

and 360 both mean magnetic north.

CLS BLUE

PRINT AT 5,1 "Demonstrate micro:bit Compass"

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

Guide to Using Best Calculator Page | 226

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 6,1 "Got a device", device.Name

 period = INPUT DEFAULT 100 PROMPT "Period (in millisecond) 1, 2,

5, 10, 20, 80, 160 and 640"

 PRINT AT 7,1 "SETUP", tag.CompassSetup(1, period, “Compass”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The Compass routine will

 REM be called with updates.

 FOR time = 1 TO 10

 Screen.ClearLine(3)

 PRINT "TIME", time

 PAUSE 50

 NEXT time

 PRINT AT 9, 1 "FINISH", status

 tag.CompassSetup(0, period, "Compass")

END IF

FUNCTION Compass(tag, bearing)

 Screen.ClearLine(1)

 PRINT "bearing", bearing

END

39.2.4 Magnetometer
Demonstrates the basics of the MagnetometerSetup and using a

callback routine.

CLS BLUE

PRINT AT 5,1 "Demonstrate micro:bit Magnetometer"

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

Guide to Using Best Calculator Page | 227

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 6,1 "Got a device", device.Name

 REM 1=turn on the on-device magnetometer

 period = INPUT DEFAULT 100 PROMPT "Period (in millisecond) 1, 2,

5, 10, 20, 80, 160 and 640"

 PRINT AT 7,1 "SETUP", tag.MagnetometerSetup(1, period,

“Magnetometer”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The Magnetometer routine will

 REM be called with updates.

 FOR time = 1 TO 10

 Screen.ClearLine(3)

 PRINT "TIME", time

 PAUSE 50

 NEXT time

 PRINT AT 9, 1 "FINISH", status

 tag.MagnetometerSetup(0, period, "Magnetometer")

END IF

FUNCTION Magnetometer(tag, x, y, z)

 Screen.ClearLine(1)

 PRINT x, y, z

END

39.2.5 SetLed
Demonstrates how to set the LED 'screen' of the device. The method

takes 5 values, one for each row in the screen.

CLS BLUE

PRINT AT 5,1 "Demonstrate micro:bit Write (text, speed)"

Guide to Using Best Calculator Page | 228

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 6,1 "Got a device", device.Name

 REM Draws a diagonal line. the top row has a couple

 REM more LEDs turned on.

 REM 0x07==3 bits, on the right, top row

 REM 0x02==second row, etc.

 PRINT "status", tag.SetLed (0x07, 0x02, 0x04, 0x08, 0x10)

END IF

39.2.6 Status
Shows how to get some basic information out of the device.

CLS BLUE

PRINT "An introduction to the Microbits specialization"

device = Bluetooth.PickDevicesName(“*BBC*”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 PRINT "BBC Device"

 PRINT "Name", device.Name

 tag = device.As (“microbit”)

 PRINT "Methods", tag.Methods

 PRINT "GetName()", tag.GetName()

 PRINT " "

END IF

39.2.7 Temperature
Demonstrates the TemperatureSetup method which sets up a callback

function that will be called when the temperature data changes. The

Guide to Using Best Calculator Page | 229

callback function will be called with the device and the temperature in

degrees Celsius.

CLS BLUE

PRINT AT 5,1 "Demonstrate micro:bit temperature"

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 6,1 "Got a device", device.Name

 REM 1=turn on the on-device temperature sensor

 period = INPUT DEFAULT 100 PROMPT "Period (in millisecond) 1, 2,

5, 10, 20, 80, 160 and 640"

 PRINT AT 7,1 "SETUP", tag.TemperatureSetup(1, period,

“Temperature”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The temperature routine will

 REM be called with updates.

 FOR time = 1 TO 10

 Screen.ClearLine(3)

 PRINT "TIME", time

 PAUSE 50

 NEXT time

 PRINT AT 9, 1 "FINISH", status

 tag.TemperatureSetup(0, period, "Temperature")

END IF

FUNCTION Temperature(tag, degreesC)

 Screen.ClearLine(1)

 PRINT "TEMP", degreesC

Guide to Using Best Calculator Page | 230

END

39.2.8 Write (text, speed)
Demonstrates how to write text on the LED 'screen' of the device. The

method takes two parameters: a string to display and a speed. The

speed says how fast the text will scroll on the screen. A good value is

100.

CLS BLUE

PRINT AT 5,1 "Demonstrate micro:bit Write (text, speed)"

device = Bluetooth.PickDevicesName(“BBC micro:bit*”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As("microbit")

 PRINT AT 6,1 "Got a device", device.Name

 text = INPUT DEFAULT "hello" PROMPT "Text to write"

 speed = INPUT DEFAULT 100 PROMPT "Scroll speed"

 PRINT "status", tag.Write (text, speed)

END IF

39.3 BT: BELIGHT
Supports the beLight CC2540T developer kit from TI. This is a small,

Bluetooth-enabled high-output light. Unlike some other lights, it

includes a bright white light plus individual red, green and blue lights.

This lets you make a light whose color can be adjusted to be cooler

(more blue) or warmer (more red). The BC BASIC device.As("beLight")

specialization includes just one method, SetColor(r, g, b, w) that lets you

set the red, green, blue and white values. Valid values are 0 (off) to 255.

39.3.1 Green

Turns the device green

Guide to Using Best Calculator Page | 231

CLS BLUE

PRINT "Sets the beLight to green"

device = Bluetooth.PickDevicesName(“beLight”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 beLight = device.As (“beLight”)

 REM The four parameters are Red, Green, Blue and White values.

 REM White is very bright

 REM They must be in the range 0 to 255

 Status = beLight.SetColor (0, 255, 0, 0)

 PRINT “status”, Status

END IF

39.3.2 Red
Turns the beLight red

CLS BLUE

PRINT "Sets the beLight to red"

device = Bluetooth.PickDevicesName(“beLight”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 beLight = device.As (“beLight”)

 REM The four parameters are Red, Green, Blue and White values.

 REM White is very bright

 REM They must be in the range 0 to 255

 Status = beLight.SetColor (255, 0, 0, 0)

 PRINT “status”, Status

END IF

Guide to Using Best Calculator Page | 232

39.4 BT: DOTTI
Demonstrates how to control the Dotti device (from Witti design

company). The DOTTI device is a small desktop device with an 8x8 array

of pixels. Each pixel can be programmed individually. The Pairing code is

123456.

39.4.1 An introduction

An introduction to using the DOTTI specialization

CLS BLUE

PRINT "An introduction to the DOTTI specialization"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 PRINT "Dotti Device"

 PRINT "Name", device.Name

 Dotti = device.As (“DOTTI”)

 PRINT "Methods", Dotti.Methods

 PRINT "GetName()", Dotti.GetName()

 PRINT "GetPower()", Dotti.GetPower()

 PRINT " "

END IF

39.4.2 Change Mode
Changes the mode of the Dotti device (clock, animation, etc)

CLS BLUE

PRINT "Set DOTTI mode"

PRINT "0=default on"

PRINT "1=Animation"

PRINT "2=Clock"

PRINT "3=Dice Game"

PRINT "4=Battery Indicator"

Guide to Using Best Calculator Page | 233

PRINT "5=Off"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 device = devices.Get(i)

 Dotti = device.As (“DOTTI”)

 mode = INPUT DEFAULT 1 PROMPT "What mode?"

 Status = Dotti.ChangeMode(mode)

 PRINT “status”, Status

END IF

39.4.3 List BT Devices
Lists all of the available paired Bluetooth devices and prints both the

Windows version of the name and the BLE (Bluetooth device) version of

the name. These can be different on DOTTI devices: when you use the

DOTTI commands to change the name, the BLE name will change. But

the Windows name might only change after restarting or re-pairing the

device.

CLS BLUE

PRINT "Read Bluetooth Power"

REM

REM How many Bluetooth devices are available?

REM

devices = Bluetooth.Devices ()

FOR i = 1 TO devices.Count

 device = devices.Get(i)

 PRINT “NAME”, device.Name

 GetPowerInfo(device)

NEXT i

REM Get power data using the RAW bluetooth routines

Guide to Using Best Calculator Page | 234

FUNCTION GetPowerInfo(bt)

 PRINT "Init", bt.Init()

 PRINT “POWER”, bt.ReadRawByte(“180f”, “2a19”)

 PRINT “CACHE”, bt.ReadCachedByte(“180f”, “2a19”)

 PRINT “BLE_Name”, bt.BLE_Name

END

39.4.4 Load screen from memory
Loads the screen from memory (animation, dice, notifications, etc)

Status = Dotti.ChangeMode(2)

CLS BLUE

PRINT "Load Screen"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 device = devices.Get(i)

 Dotti = device.As (“DOTTI”)

 ez = INPUT DEFAULT 24 PROMPT "What icon?"

 Part1=EZValueToPart1(ez)

 Part2=EZValueToPart2(ez)

 PRINT "ez", ez

 PRINT "Part1", Part1

 PRINT "Part2", Part2

 Dotti.LoadScreenFromMemory(Part1, Part2)

END IF

FUNCTION ShowAllScreens(Dotti)

 FOR ez = 1 TO 9

 Part1=EZValueToPart1(ez)

 Part2=EZValueToPart2(ez)

 PRINT ez, Part1, Part2

 Dotti.LoadScreenFromMemory(Part1, Part2)

Guide to Using Best Calculator Page | 235

 PAUSE 50

 NEXT ez

END

FUNCTION EZValueToPart1(ez)

IF (ez = 0) THEN RETURN 0

IF (ez < 9) THEN RETURN 2

IF (ez < 17) THEN RETURN 1

IF (ez < 23) THEN RETURN 2

IF (ez = 23) THEN RETURN 0x10

IF (ez = 24) THEN RETURN 0x20

IF (ez = 25) THEN RETURN 0x30

IF (ez = 26) THEN RETURN 0x40

IF (ez = 27) THEN RETURN 0x50

IF (ez = 28) THEN RETURN 0x60

IF (ez = 29) THEN RETURN 0x70

IF (ez = 30) THEN RETURN 0x80

IF (ez = 31) THEN RETURN 0x90

PRINT "p1"

RETURN 0

FUNCTION EZValueToPart2(ez)

IF (ez = 0) THEN RETURN 0

IF (ez < 9) THEN RETURN ((ez-1)*16+0x80)

IF (ez < 17) THEN RETURN ((ez-9)*16)

IF (ez < 23) THEN RETURN ((ez-17)*16)

IF (ez < 32) THEN RETURN 0

PRINT "p2"

RETURN 0

39.4.5 Raw Bluetooth commands
Writes a single red dot into position (2,2) on a Dotti device using the

raw Bluetooth commands

CLS BLUE

PRINT "Write red dot onto DOTTI device"

Guide to Using Best Calculator Page | 236

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 device = devices.Get(i)

 IF (device.Name = “Dotti”) THEN WriteDot(device, 10, 255, 0, 0)

END IF

FUNCTION WriteDot(bt, pos, r, g, b)

 bt.Init()

 REM The fff0 is the service for many DOTTI commands

 REM The fff3 is the characteristic used by service fff0

 REM for many of the DOTTI commands

 REM the 7 and 2 are the bytes that define the DOTTI

 REM command to send (0x0702 means set LED color)

 REM the pos is the position from 1 to 64

 REM the r g and b are the color to set.

 bt.WriteBytes (“fff0”, “fff3”, 7, 2, pos, r, g, b)

END

39.4.6 SetAnimationSpeed
Sets the animation speed (and does a ChangeMode to the animation)

CLS BLUE

PRINT "Set Dotti animation speed"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 device = devices.Get(i)

 Dotti = device.As (“DOTTI”)

 speed = INPUT DEFAULT 1 PROMPT "What speed (1 to 6)?"

 Status = Dotti.ChangeMode(1)

 Status = Dotti.SetAnimationSpeed(speed)

Guide to Using Best Calculator Page | 237

 PRINT “status”, Status

END IF

39.4.7 SetColumn and SetRow to random lines
Draw random color lines on a Dotti device using SetColumn and SetRow

CLS BLUE

PRINT "Write random lines"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Dotti = device.As (“DOTTI”)

 CLS GREEN

 PRINT device.Name

 Dotti.SetPanel (50, 50, 50)

 REM set to a medium kind of green

 FOR n = 1 TO 200

 x = Math.Ceiling(RND * 8)

 green = Math.Ceiling(RND*255)

 red = Math.Ceiling(RND*255)

 blue = Math.Ceiling(RND*255)

 Dotti.SetColumn (x, red, green, blue)

 x = Math.Ceiling(RND * 8)

 green = Math.Ceiling(RND*255)

 red = Math.Ceiling(RND*255)

 blue = Math.Ceiling(RND*255)

 Dotti.SetRow (x, red, green, blue)

 NEXT n

END IF

Guide to Using Best Calculator Page | 238

39.4.8 SetName of a Dotti device
Sets the name of a Dotti device

CLS BLUE

PRINT "Change the name of a Dotti device"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 PRINT device.Name

 Dotti = device.As (“DOTTI”)

 Status = Dotti.SetName ("Dotti")

 PRINT “status”, Status

END IF

39.4.9 SetPixel to random green dots
Displays random green dots on the Dotti using the dotti.SetPixel

command.

CLS BLUE

PRINT "Write green dot onto DOTTI device"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Dotti = device.As (“DOTTI”)

 CLS GREEN

 PRINT device.Name

 Dotti.SetPanel (0, 10, 0)

 REM set to a medium kind of green

 FOR n = 1 TO 200

 x = Math.Ceiling(RND * 8)

Guide to Using Best Calculator Page | 239

 y = Math.Ceiling(RND*8)

 green = Math.Ceiling(RND*255)

 Status = Dotti.SetPixel (x, y, 0, green, 0)

 NEXT n

END IF

39.4.10 SetPixel to write a single green dot
Writes a green dot to a Dotti device using the dotti.SetPixel() command

CLS BLUE

PRINT "Write green dot onto DOTTI device"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Dotti = device.As (“DOTTI”)

 Status = Dotti.SetPixel (3, 3, 0, 255, 0)

 PRINT “status”, Status

END IF

39.4.11 Sync Time
Sets the time on the Dotti device

CLS BLUE

PRINT "SyncTime -- set Dotti time"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Dotti = device.As (“DOTTI”)

 PRINT "DOTTI", Dotti

 h = INPUT DEFAULT 10 PROMPT "What hour?"

 m = INPUT DEFAULT 10 PROMPT "What minute?"

Guide to Using Best Calculator Page | 240

 s = INPUT DEFAULT 15 PROMPT "What second?"

 Status = Dotti.ChangeMode(2)

 Status = Dotti.SyncTime(h, m, s)

 PRINT “status”, Status

END IF

39.5 BT: HEXIWEAR
The Hexiwear is a small hexagonal "wearable" IOT device from

http://www.hexiwear.com/. It includes a number of sensors including

heart rate, steps, weather and the normal accelerometer and

gyroscope. The Hexiwear device.As("Hexiwear") specialization gives you

easy access to all of the Hexiwear data.

39.5.1 Accelerometer

This program provides a constant stream of accelerometer updates

from the device. In the program, all of the Hexiwear devices are listed (a

device is known to be a Hexiwear device if it's name is HEXIWEAR). For

each device found, the device.As("Hexiwear") specialization is created.

Then the program goes into a loop, getting the data and printing it to

the screen.

CLS BLUE

PRINT AT 5,1 "Demonstrate Hexiwear Accelerometer"

device = Bluetooth.PickDevicesName(“HEXIWEAR”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“Hexiwear”)

 PRINT AT 6,1 "Got a device", device.Name

 REM Now poll for data.

 FOR time = 1 TO 10

 Screen.ClearLine (3)

 PRINT AT 3, 1 "TIME", time

Guide to Using Best Calculator Page | 241

 Screen.ClearLine(1)

 data = tag.GetAccelerometer()

 PRINT AT 1,1 data.Get(1), data.Get(2), data.Get(3)

 PAUSE 50

 NEXT time

 PRINT AT 9, 1 "FINISH", status

 tag.Close()

END IF

39.5.2 Compass
This program provides a constant stream of compass updates from the

device. In the program, all of the Hexiwear devices are listed (a device is

known to be a Hexiwear device if it's name is HEXIWEAR). For each

device found, the device.As("Hexiwear") specialization is created. Then

the program goes into a loop, getting the data and printing it to the

screen.

CLS BLUE

PRINT AT 7,1 "Demonstrate Hexiwear Magnetometer"

device = Bluetooth.PickDevicesName(“HEXIWEAR”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“Hexiwear”)

 PRINT AT 8,1 "Got a device", device.Name

 data = tag.GetMagnetometer()

 REM Now poll for data.

 FOR time = 1 TO 99

 Screen.ClearLine(11)

 PRINT AT 11, 1 "TIME", time

 data = device.ReadRawBytes("2000", "2003")

Guide to Using Best Calculator Page | 242

 FOR i=1 TO 6

 Screen.ClearLine(1)

 PRINT AT i,1 data.Get(i)

 NEXT i

 GOTO 90

 data = tag.GetMagnetometer()

 PRINT AT 1,1 INT (data.Heading)

 Screen.ClearLine(3)

 PRINT AT 3,1 data.X, data.Y

 Screen.ClearLine(4)

 PRINT AT 4,1 data.Z

90 REM bottom

 PAUSE 10

 NEXT time

 PRINT AT 11, 1 "FINISH", status

 tag.Close()

END IF

39.5.3 List Information
The List Information program provides information about each

Hexiwear device. For each device, a device.As("Hexiwear")

specialization is created. The program then prints the device name,

battery power level, manufacturer name and firmware revision. To see

all of kinds of data you can read from a Hexiwear device, look at the

ReadAll program. It prints all of the data that a Hexiwear is capable of

producing.

CLS BLUE

PRINT "Available Bluetooth devices"

devices = Bluetooth.DevicesName ("HEXIWEAR")

FOR i = 1 TO devices.Count

Guide to Using Best Calculator Page | 243

 device = devices.Get(i)

 PRINT “NAME”, device.Name

 tag = device.As("Hexiwear")

 PRINT tag.GetName()

 PRINT tag.GetPower()

 PRINT tag.GetManufacturerName()

 REM does not work. PRINT tag.GetHardwareRevision()

 PRINT tag.GetFirmwareRevision()

NEXT i

n = devices.Count

PRINT " "

PRINT "" + n + " devices were found"

39.5.4 Raw Access to Hexiwear
The Raw Access program demonstrates how you can get information

from a Hexiwear device without using the specialization. To do this, you

will need know the different Bluetooth services and characteristics that

a Hexiwear device exposes and how to read the resulting data. This

documentation is available at

https://www.dropbox.com/s/92tphuymsv0n5kx/HEXIWEAR%20Bluetoo

th%20Specifications.pdf?dl=0 In this program the accelerometer data is

read. The acceleration service is server "2000" and the acceleration data

is characteristic "2001". The data is read using the ReadRawBytes()

method; that method returns an array of 6 bytes. The array starts at

index 1. The bytes of the array must be interpreted as 3 16-bit integers.

To interpret the bytes, you can use the built-in GetValue() method on

the data array; that method takes in two parameters. The first

parameter is the index to start reading at and the second is the

interpretation type. Use "int16-le" to interpret the data as a 16-bit

signed integer, little endian.

CLS BLUE

ACCSERVICE ="2000"

ACCDATA ="2001"

Guide to Using Best Calculator Page | 244

device = Bluetooth.PickDevicesName(“HEXIWEAR”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 PRINT "DEVICE", device.Name

 address= device.Init()

 PRINT "Address", address

 REM Don't have to tell the device to turn on accelerometer

 PRINT "X", "Y", "Z"

 FOR time = 1 TO 15

 PAUSE 50

 data = device.ReadRawBytes(ACCSERVICE, ACCDATA)

 x = data.GetValue (1, "int16-le") / 100

 y = data.GetValue(3, "int16-le") / 100

 z = data.GetValue(5, "int16-le") / 100

 PRINT x, y, z

 NEXT time

 PRINT "Done"

END IF

39.5.5 Read All
The Read All program demonstrates all of the different sensors in the

Hexiwear IOT device. In the program, all of the Hexiwear devices are

listed and a specialization created. Then the Hexiwear mode is read.

Depending on the mode, the heart rate, pedometer or sensor data will

be printed.

CLS BLUE

PRINT AT 12,1 "Demonstrate Hexiwear sensors"

Guide to Using Best Calculator Page | 245

device = Bluetooth.PickDevicesName(“HEXIWEAR”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“Hexiwear”)

 PRINT AT 1,1 "Got a device", device.Name

 REM Now poll for data.

 FOR time = 1 TO 4

 Screen.ClearLine(2)

 PRINT AT 2, 1 "TIME", time

 mode = tag.GetMode()

 PRINT AT 3,1 "MODE", mode

 IF (mode = 2) THEN ShowSensors(tag)

 IF (mode = 5) THEN ShowHeart(tag)

 IF (mode = 6) THEN ShowPedometer(tag)

 PAUSE 50

 NEXT time

 PRINT AT 11, 1 "FINISH", status

 tag.Close()

END IF

FUNCTION ShowHeart(tag)

 Screen.ClearLine(4)

 PRINT AT 4,1 "Heart", tag.GetHeart()

END

FUNCTION ShowPedometer(tag)

 Screen.ClearLine(4)

 Screen.ClearLine(5)

 PRINT AT 4,1 "Steps", tag.GetSteps()

 PRINT AT 5,1 "Calorie", tag.GetCalories()

Guide to Using Best Calculator Page | 246

END

FUNCTION ShowSensors(tag)

 value = tag.GetAccelerometer()

 Screen.ClearLine(4)

 PRINT AT 4,1 "Accel.", "" + value.X + " " + value.Y + " " + value.Z

 value = tag.GetGyroscope()

 Screen.ClearLine(5)

 PRINT AT 5,1 "Gyro.", "" + value.X + " " + value.Y + " " + value.Z

 value = tag.GetMagnetometer()

 Screen.ClearLine(6)

 PRINT AT 6,1 "Mag.", "" + value.X + " " + value.Y + " " + value.Z

 Screen.ClearLine(7)

 PRINT AT 7,1 "Temp", tag.GetTemperature()

 Screen.ClearLine(8)

 PRINT AT 8,1 "Humidity", tag.GetHumidity()

 Screen.ClearLine(9)

 PRINT AT 9,1 "Pressure", tag.GetPressure()

 Screen.ClearLine(10)

 PRINT AT 10,1 "Light", tag.GetLight()

END

39.5.6 Set notification count
A new program for you to edit

CLS BLUE

PRINT "Demonstrate Hexiwear SetNotificationCount"

device = Bluetooth.PickDevicesName(“HEXIWEAR”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

Guide to Using Best Calculator Page | 247

 tag = device.As(“Hexiwear”)

 PRINT "Got a device", device.Name

 REM Now set the notification

 REM 2=missed call 4=social 6=email

 REM second value is the count to set.

 status = tag.SetNotificationCount(6, 17)

 PRINT ". status", status

END IF

39.5.7 SetTime
A new program for you to edit

CLS BLUE

PRINT "Demonstrate Hexiwear SetTimeNow"

device = Bluetooth.PickDevicesName(“HEXIWEAR”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“Hexiwear”)

 PRINT "Got a device", device.Name

 REM Now set the time

 status = tag.SetTimeNow()

 PRINT ". status", status

END IF

39.6 BT: MAGICLIGHT
Supports the MagicLight and Flux lights. These are Bluetooth-enabled

light bulbs for home use.

39.6.1 Green

Turns the device green

Guide to Using Best Calculator Page | 248

CLS BLUE

PRINT "Sets the light to green"

device = Bluetooth.PickDevicesName(“LEDBlue*”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 light = device.As (“MagicLight”)

 REM The three parameters are Red, Green and Blue values.

 REM They must be in the range 0 to 255

 Status = light.SetColor (0, 255, 0)

 PRINT “status”, Status

END IF

39.6.2 Off
Turns the device off

CLS BLUE

PRINT "Turns the light off"

device = Bluetooth.PickDevicesName(“LEDBlue*””)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 light = device.As (“MagicLight”)

 Status = light.SetOff ()

 PRINT “status”, Status

END IF

39.6.3 On
Turns the device on

CLS BLUE

PRINT "Turns the light on"

Guide to Using Best Calculator Page | 249

device = Bluetooth.PickDevicesName(“LEDBlue*””)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 light = device.As (“MagicLight”)

 Status = light.SetOn ()

 PRINT “status”, Status

END IF

39.6.4 Red
Turns the light red

CLS BLUE

PRINT "Sets the light to red"

device = Bluetooth.PickDevicesName(“LEDBlue*””)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 light = device.As (“MagicLight”)

 REM The three parameters are Red, Green and Blue values.

 REM They must be in the range 0 to 255

 Status = light.SetColor (255, 0, 0)

 PRINT “status”, Status

END IF

39.7 BT: METAWEAR METAMOTION
Demonstrates using the MetaMotion device from MetaWear. Metawear

sells a variety of small battery-powered sensors devices with a variety of

sensors includes accelerometers, gyroscopes, temperature and

humidity sensors and more.

Guide to Using Best Calculator Page | 250

39.7.1 _Basics

A very simple program to get you started with programming the

mbientlab.com MetaWear MetaMotion device. The program will let you

pick a device and then report information about the device's name,

manufacturer and current power usage.

device = Bluetooth.PickDevicesName ("MetaWear")

IF (device.IsError)

 CLS RED

 PRINT "No MetaWear device found"

 PRINT device

 EXIT

END IF

meta = device.As ("MetaMotion")

IF (meta.IsError)

 CLS RED

 PRINT "Unable to connect to device"

 PRINT meta

END IF

CLS GREEN

PRINT "About my MetaWear device"

PRINT " "

PRINT "Name", meta.GetName()

PRINT "Man.", meta.GetManufacturerName()

PRINT "Power", meta.GetPower()

PRINT "Availble Methods", meta.Methods

39.7.2 Accelerometer
Demonstrates the meta.AccelerometerSetup(1, "Accelerometer",

gforce, rate) call. When new acceleration data is sent from the device,

the "Accelerometer" function will be called with the device plus an X, Y

and Z value of the acceleration. Also calls Bluetooth.PickDevicesName

("MetaWear") to pick a device to connect to.

Guide to Using Best Calculator Page | 251

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

gforce = INPUT DEFAULT 2 PROMPT "Maximum G-Force to measure

(e..g, 2)"

rate = INPUT DEFAULT 25 PROMPT "Callbacks per second (e.g., 25)"

meta.ButtonSetup(1,"Button")

meta.AccelerometerSetup(1, "Accelerometer", gforce, rate)

ExitRequested = 0

MAXTIME = 100

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 8, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = MAXTIME

NEXT time

REM Turn it off

meta.AccelerometerSetup(0, "Accelerometer")

FUNCTION Accelerometer(ble, x, y, z)

 PRINT AT 11, 1 "X", x

 PRINT AT 12, 1 "Y", y

 PRINT AT 13, 1 "Z", z

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

Guide to Using Best Calculator Page | 252

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.3 Altimeter
Demonstrates the meta.AltimeterSetup(1, "Altimeter", rate) call. When

new altimeter data is sent from the device, the "Altimeter" function will

be called with the device plus a height in meters. Also calls

Bluetooth.PickDevicesName ("MetaWear") to pick a device to connect

to.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

tare = Math.NaN

meta = device.As ("MetaMotion")

rate = INPUT DEFAULT 4 PROMPT "Seconds between callbacks (e.g.,

4)"

meta.ButtonSetup(1,"Button")

meta.AltimeterSetup(1, "Altimeter", rate)

ExitRequested = 0

MAXTIME = 100

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 7, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = MAXTIME

Guide to Using Best Calculator Page | 253

NEXT time

meta.AltimeterSetup(0, "Altimeter")

FUNCTION Altimeter(ble, meters)

 GLOBAL tare

 IF (Math.IsNaN (tare)) THEN tare = meters

 REM Conversion factor is pasted from Bing

 feet= meters * 3.2808399

 deltaFeet = (meters - tare) * 3.2808399

 PRINT AT 8, 1 "Tare", tare

 PRINT AT 9, 1 "Meters", meters

 PRINT AT 10, 1 "Feet", meters

 PRINT AT 11, 1 "Delta", deltaFeet

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.4 Ambient Light Sensor
Demonstrates the meta.LightSensorSetup(1, "LightSensor") call. When

new ambient light data is sent from the device, the "LightSensor"

function will be called with the device plus a light value. Also calls

Bluetooth.PickDevicesName ("MetaWear") to pick a device to connect

to.

CLS BLUE

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

Guide to Using Best Calculator Page | 254

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

meta.ButtonSetup(1,"Button")

meta.LightSensorSetup(1, "LightSensor")

ExitRequested = 0

MAXTIME = 100

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 8, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = 9999

NEXT time

meta.AccelerometerSetup(0, "Accelerometer")

FUNCTION LightSensor(ble, lux)

 PRINT AT 11, 1 "LUX 1", lux

 REM PRINT AT 12, 1 "LUX 2", lux2

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.5 Barometer
Demonstrates the meta.BarometerSetup(1, "Barometer", rate) call.

When new pressure data is sent from the device, the "Barometer"

function will be called with the device plus a light value. Also calls

Guide to Using Best Calculator Page | 255

Bluetooth.PickDevicesName ("MetaWear") to pick a device to connect

to.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

rate = INPUT DEFAULT 4 PROMPT "Seconds between callbacks (e.g.,

4)"

meta.ButtonSetup(1,"Button")

meta.BarometerSetup(1, "Barometer", rate)

ExitRequested = 0

MAXTIME = 100

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 7, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = MAXTIME

NEXT time

meta.AltimeterSetup(0, "Barometer")

FUNCTION Barometer(ble, pascal)

 REM Convert to inches of mercury

 inches = pascal * 0.000295299830714

 mb = pascal * 0.01

 PRINT AT 9, 1 "Pascal", pascal

 PRINT AT 10, 1 "Inches", inches

Guide to Using Best Calculator Page | 256

 PRINT AT 11, 1 "mb", mb

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.6 Black
Turns the LED to Black using the SetColor (red, green, blue) method.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

REM Color values are red, green, blue.

meta.SetColor(0, 0, 0)

39.7.7 Blue Pulse
Demonstrates the advanced capabilities of the LED pulse control in the

MetaWear. The G, R, B values are set seperately; you set the high and

low intensity and the rise, high, fall and total cycle time. This lets you

design fancy pulse ability. This program sets the LED to slowly transition

from a mid to high blue value and back again.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

Guide to Using Best Calculator Page | 257

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

REM meta.SetColor (0, 0, 0)

REM result = meta.LedConfig(0, 0, 0, 1000, 500, 20, 2500, 1)

REM result = meta.LedConfig(1, 0, 0, 1000, 500, 20, 2500, 1)

result = meta.LedConfig(2, 248, 160, 0, 100, 0, 1000, 0)

result = meta.LedOn()

PRINT result

39.7.8 Buttons
Demonstrates the meta.ButtonSetup(1, "Button") call. When teh user

pressed the button, , the "Button" function will be called with the

device plus an indication of the button press (0=up 1=down). Also calls

Bluetooth.PickDevicesName ("MetaWear") to pick a device to connect

to.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

meta.ButtonSetup(1,"Button")

MAXTIME = 100

FOR time = 0 TO MAXTIME

 PRINT AT 7, 1 "MAXTIME", MAXTIME

 PRINT AT 8, 1 "TIME", time

Guide to Using Best Calculator Page | 258

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1)

 time = MAXTIME

 ExitRequested = 0

 END IF

 IF(MAXTIME > 102)

 a = INPUT PROMPT "ERROR!"

 END IF

NEXT time

meta.ButtonSetup(0,"Button")

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.9 Green
Turns the LED to Green using the SetColor (red, green, blue) method.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

REM Color values are red, green, blue.

meta.SetColor(0, 255, 0)

Guide to Using Best Calculator Page | 259

39.7.10 Gyroscope
Demonstrates the meta.GyroscopeSetup(1, "Gyroscope", gforce, rate)

call. When new gyroscope data is sent from the device, the "Gyroscope"

function will be called with the device plus X, Y and Z values. Also calls

Bluetooth.PickDevicesName ("MetaWear") to pick a device to connect

to.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

dps = INPUT DEFAULT 500 PROMPT "Maximum Degrees-per-second

to measure (e..g, 500)"

rate = INPUT DEFAULT 25 PROMPT "Callbacks per second (e.g., 25)"

meta.ButtonSetup(1,"Button")

meta.GyroscopeSetup(1, "Gyroscope", dps, rate)

ExitRequested = 0

MAXTIME = 100

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 8, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = MAXTIME

NEXT time

REM Turn it off

meta.GyroscopeSetup(0, "Gyroscope")

FUNCTION Gyroscope(ble, x, y, z)

Guide to Using Best Calculator Page | 260

 PRINT AT 11, 1 "X", x

 PRINT AT 12, 1 "Y", y

 PRINT AT 13, 1 "Z", z

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.11 LED Off
Turns the LED Off using the LedOff() method. This is different from

simply setting the color to black.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

result = meta.LedOff()

PRINT result

39.7.12 LED On
Turns the LED on using the LedOn() method. It will display the last

pattern set.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

Guide to Using Best Calculator Page | 261

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

result = meta.LedOn()

PRINT result

39.7.13 Magnetometer
Demonstrates the meta.MagnetometerSetup(1, "Magnetometer") call.

When new magnetic data is sent from the device, the "Magnetometer"

function will be called with the device plus an X, Y and Z value of the

magnetic force. Also calls Bluetooth.PickDevicesName ("MetaWear") to

pick a device to connect to.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

meta.ButtonSetup(1,"Button")

meta.MagnetometerSetup(1, "Magnetometer")

ExitRequested = 0

MAXTIME = 100

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 8, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = MAXTIME

NEXT time

Guide to Using Best Calculator Page | 262

REM Turn it off

meta.MagnetometerSetup(0, "Magnetometer")

FUNCTION Magnetometer(ble, x, y, z)

 PRINT AT 11, 1 "X", x

 PRINT AT 12, 1 "Y", y

 PRINT AT 13, 1 "Z", z

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.7.14 Save Data To File
Saves Barometer data to a CSV file along with a time stamp. This sample

demonstrates how you can make a simple data logger program that

exports data in a format that can be used by Excel.

REM Version 4:52

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

file = File.AppendPicker("CSV file", ".csv", "altimeter.csv")

tare = Math.NaN

meta.ButtonSetup(1,"Button")

Guide to Using Best Calculator Page | 263

meta.AltimeterSetup(1, "Altimeter")

DataToWrite = ""

LastFlushTime = DateTime.GetNow()

10 REM LOOP TOP

ExitRequested = 0

MAXTIME = 10000

Screen.RequestActive()

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 8, 1 "TIME", time

 PAUSE 50

 meta.SetColor (time*255/MAXTIME, 0, 255)

 IF (ExitRequested =1) THEN time = MAXTIME

NEXT time

IF (ExitRequested = 0) THEN GOTO 10

Screen.RequestRelease()

meta.AltimeterSetup(0, "Altimeter")

FUNCTION Altimeter(ble, type, meters)

 REM The first reading is the zero point

 GLOBAL tare

 IF (tare.IsNaN) THEN tare = meters

 PRINT AT 10,1 "TARE", tare, meters

 meters = meters - tare

 PRINT AT 11, 1 "TYPE", type

 PRINT AT 11+type, 1 "VALUE", meters

 GLOBAL file

 DIM line (3)

 dt = DateTime.GetNow()

 line(1) = dt.Date

 line(2) = dt.Time

 line(3) = meters

 str = String.Escape("csv", line)

Guide to Using Best Calculator Page | 264

 WriteData (str)

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 5,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

FUNCTION WriteData(line)

 GLOBAL DataToWrite

 GLOBAL LastFlushTime

 DataToWrite = DataToWrite + line

 Screen.ClearLine (16)

 Screen.ClearLine (17)

 Screen.ClearLine (18)

 Screen.ClearLine (19)

 now = DateTime.GetNow()

 PRINT AT 17,1 "LFT", LastFlushTime.Time, now.Time

 delta = now.Subtract (LastFlushTime)

 PRINT AT 16,1 "delta", delta

 IF (delta > 4)

 LastFlushTime = now

 FlushData()

 END IF

 PRINT AT 15, 1 "STR", str

END

FUNCTION FlushData()

 GLOBAL file

Guide to Using Best Calculator Page | 265

 GLOBAL DataToWrite

 result = file.AppendText (DataToWrite)

 DataToWrite = ""

 PRINT AT 18,1 "Write", result

END

39.7.15 Temperature
Demonstrates the meta.TemperatureSetup(1, "Temperature") call.

When new temperature data is sent from the device, the

"Temperature" function will be called with the device plus the

temperature in degrees Celsius. Also calls Bluetooth.PickDevicesName

("MetaWear") to pick a device to connect to.

CLS

device = Bluetooth.PickDevicesName ("MetaWear")

IF device.IsError

 PRINT "No device was picked"

 END

END IF

PRINT "Device is", device

meta = device.As ("MetaMotion")

meta.ButtonSetup(1,"Button")

meta.TemperatureSetup(1, "Temperature")

ncall= 0

ExitRequested = 0

MAXTIME = 100000

FOR time = 0 TO MAXTIME STEP 1

 PRINT AT 8, 1 "TIME", time

 PAUSE 50

 IF (ExitRequested =1)

 time = MAXTIME

 ELSE

 meta.SetColor (time*255/MAXTIME, 0, 255)

 meta.TemperatureRead()

Guide to Using Best Calculator Page | 266

 END IF

NEXT time

meta.TemperatureSetup(0, "Temperature")

FUNCTION Temperature(ble, celcius)

 GLOBAL ncall

 ncall = ncall+1

 PRINT AT 11, 1 "TEMP", celcius

 PRINT AT 12, 1 "F.", (celcius*9/5+32)

 PRINT AT 13, 1 "NCALL.", ncall

END

FUNCTION Button (ble, value)

 PRINT AT 4, 1 "Button!", ble

 PRINT AT 10,1 "VALUE", value

 GLOBAL ExitRequested

 IF (value = 1) THEN ExitRequested = 1

END

39.8 BT: NOTTI
Demonstrates how to control the NOTTI device (from Witti design

company). The NOTTI device is a desktop device with a single light that

can be set to any color. You can also program transitions and for colors

changes to happen at a time in the future.

39.8.1 An introduction

An introduction to using the NOTTI specialization

CLS BLUE

PRINT "An introduction to the NOTTI specialization"

devices = Bluetooth.DevicesName (“*Notti”)

Guide to Using Best Calculator Page | 267

FOR i = 1 TO devices.Count

 device = devices.Get(i)

 PRINT "Notti Device"

 PRINT "Name", device.Name

 Notti = device.As (“NOTTI”)

 PRINT "Methods", Notti.Methods

 PRINT "GetName()", Notti.GetName()

 PRINT "GetPower()", Notti.GetPower()

 PRINT " "

NEXT i

39.8.2 Change Mode
Changes the mode of the NOTTI device (clock, animation, etc)

CLS BLUE

PRINT "Set NOTTI mode"

PRINT "0=Light on"

PRINT "1=Light off"

PRINT "2=Full animation"

device = Bluetooth.PickDevicesName(“*Notti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Notti = device.As (“NOTTI”)

 mode = INPUT DEFAULT 1 PROMPT "What mode?"

 Status = Notti.ChangeMode(mode)

 PRINT “status”, Status

END IF

39.8.3 NOTTI timer
Slowly switches from GREEN to RED over (n) minutes

device = Bluetooth.PickDevicesName(“*Dotti”)

Guide to Using Best Calculator Page | 268

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 notti = device.As ("NOTTI")

 PRINT "Power", notti.GetPower()

 nminutes = Calculator.Value

 nminutes = INPUT DEFAULT nminutes PROMPT "How many minutes

to run for?"

END IF

STOP nminutes

FUNCTION DoTimer(device)

rstart = 0

rend = 255

gstart = 255

gend = 0

bstart = 0

bend = 0

notti.SetColor (rstart, gstart, bstart)

PRINT notti

Screen.RequestActive()

tot = nminutes*60

FOR s = 0 TO tot

 pct = s / tot

 r = pct*(rend - rstart) + rstart

 g = pct*(gend - gstart) + gstart

 b= pct*(bend - bstart) + bstart

 IF (Math.Mod(s, 60)= 0) THEN PRINT s/60

 Screen.ClearLine (8)

 PRINT AT 8,1 "Set color", tot-s,INT(pct*1000)/10

 notti.SetColor(r, g, b)

 PAUSE 50

NEXT s

PRINT "done!"

Guide to Using Best Calculator Page | 269

notti.SetColor(0, 0, 255)

Screen.RequestRelease()

RETURN

39.8.4 Raw Bluetooth commands
Sets the NOTTI color to red using the raw Bluetooth commands

CLS BLUE

PRINT "Set a NOTTI device to RED"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 WriteColor(device, 255, 0, 0)

END IF

FUNCTION WriteColor(bt, r, g, b)

 bt.Init()

 REM The fff0 is the service for many NOTTI commands

 REM The fff3 is the characteristic used by service fff0

 REM for many of the NOTTI commands

 REM the 6 and 1 are the bytes that define the NOTTI

 REM command to send (0x0601 means set LED color)

 REM the r g and b are the color to set.

 bt.WriteBytes (“fff0”, “fff3”, 6, 1, r, g, b)

END

39.8.5 Set Alarm
Sets the Alarm on the NOTTI device

CLS BLUE

PRINT "ALARM -- set NOTTI alarm"

device = Bluetooth.PickDevicesName(“*Dotti”)

Guide to Using Best Calculator Page | 270

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Notti = device.As (“NOTTI”)

 PRINT "NOTTI", Notti

 h = INPUT DEFAULT 10 PROMPT "What hour?"

 m = INPUT DEFAULT 10 PROMPT "What minute?"

 ahead = INPUT DEFAULT 1 PROMPT "How far ahead 1=2.5 minutes"

 Status = Notti.SetAlarmTime(h, m)

 REM the 2 means it's a one-time alarm (0=off 1=every day)

 REM 255, 0, 0 is RED (rgb color)

 REM 1 means start up 2.5 minutes ahead of time (1=2.5 minute

10=25 minutes)

 PRINT "AT " + h + ":" + m + " turn to RED"

 PRINT "START " + (ahead*2.5) + " minutes ahead of that time"

 Status = Notti.AlarmSetting (2, 255, 0, 0, ahead)

 PRINT “status”, Status

END IF

39.8.6 SetColor to change the NOTTI color to blue
Sets the NOTTI color to Blue

CLS BLUE

PRINT "Sets a NOTTI to blue"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Notti = device.As (“NOTTI”)

 REM The three parameters are Red, Green and Blue values.

 REM They must be in the range 0 to 255

 Status = Notti.SetColor (0, 0, 255)

 PRINT “status”, Status

Guide to Using Best Calculator Page | 271

END IF

39.8.7 SetColor to change the NOTTI color to green
Sets the NOTTI color to Blue

CLS BLUE

PRINT "Sets a NOTTI to green"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Notti = device.As (“NOTTI”)

 REM The three parameters are Red, Green and Blue values.

 REM They must be in the range 0 to 255

 Status = Notti.SetColor (0, 255, 0)

 PRINT “status”, Status

END IF

39.8.8 SetColorCustom animates the color from red to blue and back

again
Uses the SetColorCustom command to change colors

CLS BLUE

PRINT "Sets a NOTTI from RED to BLUE and back again"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Notti = device.As (“NOTTI”)

 REM The three parameters are Red, Green and Blue values.

 REM They must be in the range 0 to 255

 Status = Notti.SetColorCustom (255, 0, 0, 0 , 0, 255)

 PRINT “status”, Status

Guide to Using Best Calculator Page | 272

END IF

39.8.9 SetName of a NOTTI device
Sets the name of a NOTTI device. The device must be reset and re-

paired for Windows to use the new name.

CLS BLUE

PRINT "Change the name of a NOTTI device"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 PRINT device.Name

 Notti = device.As (“NOTTI”)

 Status = Notti.SetName ("My-Notti")

 PRINT “status”, Status

END IF

39.8.10 Sync Time
Sets the time on the NOTTI device

CLS BLUE

PRINT "SyncTime -- set NOTTI time"

device = Bluetooth.PickDevicesName(“*Dotti”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 Notti = device.As (“NOTTI”)

 PRINT "NOTTI", Notti

 h = INPUT DEFAULT 10 PROMPT "What hour?"

 m = INPUT DEFAULT 10 PROMPT "What minute?"

 s = INPUT DEFAULT 15 PROMPT "What second?"

 Status = Notti.SyncTime(h, m, s)

Guide to Using Best Calculator Page | 273

 PRINT “status”, Status

END IF

39.9 BT: SENSORTAG 1350
Demonstrates how to use the TI SensorTag 1350 (a V2 version released

in late 2016). The model 1350 SensorTag from Texas Instruments is a

small, battery-powered sensor platform from TI. The sensors include an

accelerometer, gyroscope, IR contactless thermometer, humidity

sensor, magnetometer, barometer and on-chip temperature sensor. It

also includes a light sensor and a magnetic switch detector (reed relay).

39.9.1 Accelerometer Gyroscope and Magnetometer

Demonstrates the basics of the AccelometerSetup and using a callback

routine. The V2 SensorTag has a combined

accelerometer/gyroscope/magnetometer chip that provides XYZ data

for all three sensors at once.

CLS BLUE

PRINT AT 5,1 "Demonstrate TI SensorTag Accelerometer"

device = Bluetooth.PickDevicesName(“CC1350 SensorTag,SensorTag

2.0”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 PRINT AT 6,1 "Got a device", device.Name

 REM TABLE: Bits to turn on different position sensors

 REM 1 = Gyro Z axis

 REM 2 = Gyro Y axis

 REM 4 = Gyro X axis [7==Gyro ALL axis]

 REM 8 = Acc X axis

 REM 16 = Acc Y axis

 REM 32 = Acc Z axis [56==Acc ALL axis]

 REM 64 = Mag ALL axis

 REM 128 = Wake-on-motion enabled

Guide to Using Best Calculator Page | 274

 REM 0 = 2G range on acc

 REM 256 = 4G range on acc

 REM 512 = 8G range on acc

 REM 768 = 16G range on acc

 REM Example: to turn on all axis of the acc and nothing else with a

4G range:

 REM AccFlag = 8+16+32+256

 REM Turn on all devices, no wake-on-movement, acc range 2G.

 AccFlag = 1+2+4+8+16+32+64

 AccFlag = 8+16+32

 PRINT AT 7,1 "SETUP", tag.AccelerometerSetup(AccFlag, 20, “Acc”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The Acc routine will

 REM be called with updates.

 FOR time = 1 TO 10

 Screen.ClearLine(1)

 now = DateTime.GetNow()

 PRINT "TIME", now.Time

 PAUSE 50

 NEXT time

 REM Undo the accelerometer

 status = tag.AccelerometerSetup(0, 0, "")

 PRINT AT 9, 1 "FINISH", status

 tag.Close()

END IF

FUNCTION Acc(tag, ax, ay, az, mx, my, mz, rz, ry, rz)

 Screen.ClearLine(2)

 PRINT "X", "Y", "Z"

 Screen.ClearLine(3)

 PRINT Math.Round(ax,2), Math.Round(ay,2), Math.Round(az,2)

Guide to Using Best Calculator Page | 275

 Screen.ClearLine(4)

 PRINT Math.Round(mx,2), Math.Round(my,2), Math.Round(mz,2)

 Screen.ClearLine(5)

 PRINT Math.Round(rx,2), Math.Round(ry,2), Math.Round(rz,2)

END

39.9.2 Accelerometer Off
Turns off the accelerometer

CLS BLUE

device = Bluetooth.PickDevicesName(“CC1350 SensorTag,SensorTag

2.0”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 PRINT "Got a device", device.Name

 tag.SetupAcc(0, 100, “Acc”)

END IF

PRINT "All done"

39.9.3 Barometer
Demonstrates the basics of the BarometerSetup and using a callback

routine.

CLS BLUE

PRINT AT 1,1 "Demonstrate SensorTag Barometer measurements"

REM device = Bluetooth.PickDevicesName(“CC1350

SensorTag,SensorTag 2.0”)

devices = Bluetooth.DevicesName(“CC1350 SensorTag”)

device = devices[1]

Guide to Using Best Calculator Page | 276

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.BarometerSetup(1, 100, “Barometer”)

 FOR time = 1 TO 30

 PAUSE 50

 now = DateTime.GetNow()

 Screen.ClearLine(2)

 PRINT "TIME", now.Time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.BarometerSetup(0, 100, "Barometer")

END IF

REM Temperatures are in degrees C

REM pressure is in hpa

FUNCTION Barometer(tag, temp, pressure)

 Screen.ClearLine(3)

 PRINT "Temp", temp, CTOF(temp)

 Screen.ClearLine(4)

 PRINT "Pressure", pressure, HPATOINCHM(pressure)

END

FUNCTION CTOF(C)

 F = C * 9/5 + 32

 F = Math.Round(F, 1)

END F

FUNCTION HPATOINCHM(HPA)

 ATM = HPA / 1013.25

 INCHM = ATM * 29.9213

 INCHM = Math.Round(INCHM, 2)

END INCHM

Guide to Using Best Calculator Page | 277

39.9.4 Button
Demonstrates the "Simple Key Service" on the SensorTag

CLS BLUE

PRINT AT 5,1 "Demonstrate SensorTag Buttons"

PRINT AT 6,1 "Count", devices.Count

device = Bluetooth.PickDevicesName(“CC1350 SensorTag,SensorTag

2.0”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 PRINT AT 7,1 "SETUP", tag.ButtonSetup(1, “Button”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.ButtonSetup(0, "Button")

END IF

FUNCTION Button(tag, left, right, side)

 Screen.ClearLine(1)

 IF (left) THEN PRINT AT 1,1 "LEFT"

 IF (right) THEN PRINT AT 1,8 "RIGHT"

 IF (side) THEN PRINT AT 1,16 "SIDE"

END

39.9.5 Humidity
Demonstrates the basics of the HumiditySetup and using a callback

routine.

CLS BLUE

Guide to Using Best Calculator Page | 278

PRINT AT 1,1 "Demonstrate SensorTag Humidity measurements"

FOR i=1 TO devices.Count

 device = devices.Get(i)

 tag = device.As(“SensorTag1350”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.HumiditySetup(1, 100, “Humidity”)

 FOR time = 1 TO 30

 PAUSE 50

 now = DateTime.GetNow()

 Screen.ClearLine(1)

 PRINT "TIME", now.Time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.HumiditySetup(0, 100, "Humidity")

NEXT i

REM Temperatures are in degrees C

FUNCTION Humidity(tag, temp, humidity)

 Screen.ClearLine(2)

 PRINT "TEMP", Math.Round(temp,1), CTOF(temp)

 Screen.ClearLine(3)

 PRINT "Humidity", Math.Round(humidity,2)

END

FUNCTION CTOF(C)

 F = C * 9/5 + 32

 F = Math.Round(F, 1)

END F

39.9.6 IO
Lets you control the devices on the SensorTag. The 1350 includes a red

LED and a buzzer; the 2650 includes both a red and a green LED.

Guide to Using Best Calculator Page | 279

CLS BLUE

PRINT AT 1,1 "Demonstrate SensorTag LED/Buzzer control"

device = Bluetooth.PickDevicesName(“CC1350 SensorTag,SensorTag

2.0”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 val = INPUT DEFAULT 1 PROMPT "1=RED 4=BUZZER 0=Both off"

 tag.IO(val)

END IF

39.9.7 IR
Demonstrates the basics of the IRSetup and using a callback routine.

CLS BLUE

PRINT AT 1,1 "Demonstrate SensorTag IR measurements"

device = Bluetooth.PickDevicesName(“CC1350 SensorTag,SensorTag

2.0”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.IRSetup(1, 100, “IR”)

 FOR time = 1 TO 30

 PAUSE 50

 now = DateTime.GetNow()

 Screen.ClearLine(2)

 PRINT "TIME", now.Time

 NEXT time

Guide to Using Best Calculator Page | 280

 PRINT AT 8,1 "CLOSE", tag.IRSetup(0, 100, "IR")

END IF

REM Temperatures are in degrees C

FUNCTION IR(tag, objTemp, ambTemp)

 Screen.ClearLine(3)

 PRINT "Object", Math.Round(objTemp,1), CTOF(objTemp)

 Screen.ClearLine(4)

 PRINT "Ambient", Math.Round(ambTemp,1), CTOF(ambTemp)

END

FUNCTION CTOF(C)

 F = C * 9/5 + 32

 F = Math.Round(F*10) / 10

END F

39.9.8 Optical Sensor
A new program for you to edit

CLS BLUE

PRINT AT 1,1 "Demonstrate SensorTag Optical measurements"

device = Bluetooth.PickDevicesName(“CC1350 SensorTag,SensorTag

2.0”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag1350”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.OpticalSetup(1, 100, “Optical”)

 FOR time = 1 TO 30

 PAUSE 50

 now = DateTime.GetNow()

Guide to Using Best Calculator Page | 281

 Screen.ClearLine(2)

 PRINT "TIME", now.Time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.OpticalSetup(0, 100, "Optical")

END IF

REM Light sensor readings are in Lux

FUNCTION Optical(tag, lux)

 Screen.ClearLine(3)

 PRINT "LUX", lux

END

39.10 BT: SENSORTAG 2541
Demonstrates how to use the TI SensorTag 2541 (the original version).

The model 2541 SensorTag from Texas Instruments is a small, battery-

powered sensor platform from TI. The sensors include an

accelerometer, gyroscope, IR contactless thermometer, humidity

sensor, magnetometer, barometer and on-chip temperature sensor.

39.10.1 Accelerometer

Demonstrates the basics of the AccelometerSetup and using a callback

routine.

CLS BLUE

PRINT AT 5,1 "Demonstrate TI SensorTag Accelerometer"

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 PRINT AT 6,1 "Got a device", device.Name

 REM 1=turn on the on-device accelerometer

 REM 20=accelerometer update speed (in milliseconds)

Guide to Using Best Calculator Page | 282

 PRINT AT 7,1 "SETUP", tag.AccelerometerSetup(1, 20, “Acc”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The Acc routine will

 REM be called with updates.

 FOR time = 1 TO 10

 Screen.ClearLine(3)

 PRINT "TIME", time

 PAUSE 50

 NEXT time

 REM Undo the accelerometer

 status = tag.AccelerometerSetup(0, 0, "")

 PRINT AT 9, 1 "FINISH", status

 tag.Close()

END IF

FUNCTION Acc(tag, x, y, z)

 Screen.ClearLine(1)

 PRINT x, y, z

END

39.10.2 Accelerometer Off
Turns off the accelerometer

CLS BLUE

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 PRINT "Got a device", device.Name

 tag.SetupAcc(0, 100, “Acc”)

END IF

PRINT "All done"

Guide to Using Best Calculator Page | 283

39.10.3 Accelerometer to Magic Light
Uses the TI SensorTag accelerometer to drive a Magic Light

CLS BLUE

PRINT "Demonstrate TI SensorTag Accelerometer"

lights = Bluetooth.DevicesName ("LEDBlue*")

FOR i=1 TO lights

 device = lights.Get(i)

 light = device.As("MagicLight")

NEXT i

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 PRINT "Got a device", device.Name

 PRINT tag.SetupAcc(1, 20, “Acc”)

 PRINT "Done with setup"

 FOR time = 1 TO 20

 PRINT AT 10, 1 time

 PAUSE 50

 NEXT time

 PRINT tag.SetupAcc(0, 0, "")

 tag.Close()

END IF

PRINT "DONE"

REM The tag.SetupAcc(1, 20, "Acc") call tells the device to call the

"Acc"

REM function when the accelerometer changes.

FUNCTION Acc(tag, x, y, z)

 REM Tell the Acc function that the "light" variable is really a

 REM global variable defined in the main program.

Guide to Using Best Calculator Page | 284

 GLOBAL light

 Screen.ClearLine(1)

 PRINT x, y, z

 r = ABS (x*120)

 g = ABS(y*120)

 b = ABS (z*120)

 Screen.ClearLine(2)

 PRINT r, g, b

 light.SetColor (r, g, b)

END

39.10.4 Barometer
Demonstrates the basics of the BarometerSetup and using a callback

routine.

devices = Bluetooth.DevicesName (“SensorTag”)

CLS BLUE

PRINT AT 5,1 "Demonstrate SensorTag Barometer measurements"

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.BarometerSetup(1, 100, “Barometer”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

Guide to Using Best Calculator Page | 285

 PRINT AT 8,1 "CLOSE", tag.BarometerSetup(0, 100, "Barometer")

END IF

REM Temperatures are in degrees C

REM pressure is in hpa

FUNCTION Barometer(tag, temp, pressure)

 Screen.ClearLine(1)

 PRINT temp, pressure

 Screen.ClearLine(2)

 PRINT CTOF(temp), HPATOINCHM(pressure)

END

FUNCTION CTOF(C)

 F = C * 9/5 + 32

 F = Math.Round(F*10) / 10

END F

FUNCTION HPATOINCHM(HPA)

 ATM = HPA / 1013.25

 INCHM = ATM * 29.9213

 REM INCHM = Math.Round(INCHM*10) / 10

END INCHM

FUNCTION ROUND(val)

 val = Math.Round(val*10) / 10

END val

39.10.5 Button
Demonstrates the "Simple Key Service" on the SensorTag

devices = Bluetooth.DevicesName (“SensorTag”)

CLS BLUE

PRINT AT 5,1 "Demonstrate SensorTag Buttons"

Guide to Using Best Calculator Page | 286

PRINT AT 6,1 "Count", devices.Count

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 PRINT AT 7,1 "SETUP", tag.ButtonSetup(1, “Button”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.ButtonSetup(0, "Button")

END IF

FUNCTION Button(tag, left, right, side)

 Screen.ClearLine(1)

 IF (left) THEN PRINT AT 1,1 "LEFT"

 IF (right) THEN PRINT AT 1,8 "RIGHT"

 IF (side) THEN PRINT AT 1,16 "SIDE"

END

39.10.6 Gyroscope
Demonstrates the basics of the GyroscopeSetup and using a callback

routine.

CLS BLUE

PRINT AT 5,1 "Demonstrate TI SensorTag Gyroscope"

devices = Bluetooth.DevicesName (“SensorTag”)

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

Guide to Using Best Calculator Page | 287

ELSE

 tag = device.As(“SensorTag2541”)

 PRINT AT 6,1 "Got a device", device.Name

 REM 7=turn on all axis of the gyroscope

 REM 20=accelerometer update speed (in milliseconds)

 PRINT AT 7,1 "SETUP", tag.GyroscopeSetup(7, 20, “Gyroscope”)

 PRINT AT 8,1 "Done with setup"

 REM Now wait a little while. The Acc routine will

 REM be called with updates.

 FOR time = 1 TO 10

 PRINT AT 3, 1 "TIME", time

 PAUSE 50

 NEXT time

 REM Undo the accelerometer

 status = tag.GyroscopeSetup(0, 20, "Gyroscope")

 PRINT AT 9, 1 "FINISH", status

 tag.Close()

END IF

FUNCTION Gyroscope(tag, x, y, z)

 Screen.ClearLine(1)

 PRINT ROUND(x), ROUND(y), ROUND(z)

END

FUNCTION ROUND(val)

 val = Math.Round(val*10) / 10

END val

39.10.7 Humidity
Demonstrates the basics of the HumiditySetup and using a callback

routine.

devices = Bluetooth.DevicesName (“SensorTag”)

Guide to Using Best Calculator Page | 288

CLS BLUE

PRINT AT 5,1 "Demonstrate SensorTag Humidity measurements"

FOR i=1 TO devices.Count

 device = devices.Get(i)

 tag = device.As(“SensorTag2541”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.HumiditySetup(1, 100, “Humidity”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.HumiditySetup(0, 100, "Humidity")

NEXT i

REM Temperatures are in degrees C

FUNCTION Humidity(tag, temp, humidity)

 Screen.ClearLine(1)

 PRINT temp, humidity

 Screen.ClearLine(2)

 PRINT CTOF(temp), ROUND(humidity)

END

FUNCTION CTOF(C)

 F = C * 9/5 + 32

 F = Math.Round(F*10) / 10

END F

FUNCTION ROUND(val)

 val = Math.Round(val*10) / 10

END val

39.10.8 IR
Demonstrates the basics of the IRSetup and using a callback routine.

Guide to Using Best Calculator Page | 289

devices = Bluetooth.DevicesName (“SensorTag”)

CLS BLUE

PRINT AT 5,1 "Demonstrate SensorTag IR measurements"

PRINT AT 6,1 "Count", devices.Count

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.IRSetup(1, 100, “IR”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.IRSetup(0, 100, "IR")

END IF

REM Temperatures are in degrees C

FUNCTION IR(tag, objTemp, ambTemp)

 Screen.ClearLine(1)

 PRINT objTemp, ambTemp

 Screen.ClearLine(2)

 PRINT CTOF(objTemp), CTOF(ambTemp)

END

FUNCTION CTOF(C)

 F = C * 9/5 + 32

 F = Math.Round(F*10) / 10

END F

Guide to Using Best Calculator Page | 290

39.10.9 Magnetometer
Demonstrates the basics of the MagnetometerSetup and using a

callback routine.

devices = Bluetooth.DevicesName (“SensorTag”)

CLS BLUE

PRINT AT 5,1 "Demonstrate SensorTag Magnetometer measurements"

device = Bluetooth.PickDevicesName(“SensorTag”)

IF (device.IsError)

 PRINT "No device was picked"

ELSE

 tag = device.As(“SensorTag2541”)

 REM 100=1000ms=1 second

 PRINT AT 7,1 "SETUP", tag.MagnetometerSetup(1, 100,

“Magnetometer”)

 FOR time = 1 TO 30

 PAUSE 50

 PRINT AT 3,1 "TIME", time

 NEXT time

 PRINT AT 8,1 "CLOSE", tag.MagnetometerSetup(0, 100,

"Magnetometer")

END IF

FUNCTION Magnetometer(tag, x, y, z)

 Screen.ClearLine(1)

 PRINT ROUND(x), ROUND(y), ROUND(z)

END

FUNCTION ROUND(val)

 val = Math.Round(val*10) / 10

END val

Guide to Using Best Calculator Page | 291

39.10.10 Raw access to SensorTag
Shows how to access the SensorTag using just the low-level Bluetooth

functions and without using the specialization

CLS BLUE

devices = Bluetooth.DevicesName("SensorTag*")

ACCSERVICE ="f000aa10-0451-4000-b000-000000000000"

ACCCONFIG ="f000aa12-0451-4000-b000-000000000000"

ACCDATA ="f000aa11-0451-4000-b000-000000000000"

PRINT "COUNT", devices.Count

FOR i=1 TO devices.Count

 device = devices.Get(i)

 PRINT "DEVICE", device.Name

 address= device.Init()

 PRINT "Address", address

 REM Tell the device to send me some acc. data

 PRINT "ACC ON", device.WriteBytes(ACCSERVICE, ACCCONFIG, 1)

 PRINT "COUNT", "X", "Y", "Z"

 FOR time = 1 TO 15

 PAUSE 50

 data = device.ReadRawBytes(ACCSERVICE, ACCDATA)

 PRINT data.Count, data.Get(1), data.Get(2), data.Get(3)

 NEXT time

 REM Turn it back off

 PRINT "ACC OFF", device.WriteBytes(ACCSERVICE, ACCCONFIG, 0)

 PRINT " "

NEXT i

Guide to Using Best Calculator Page | 292

39.10.11 Raw callback with the SensorTag
A new program for you to edit

CLS BLUE

PRINT AT 5,1 "Acceleration Data"

devices = Bluetooth.DevicesName (“SensorTag*”)

REM

REM Constants for TI SensorTag 2541 Accelerometer

REM These are taken from the data sheets.

REM

AccService = "f000aa10-0451-4000-b000-000000000000"

AccData = "f000aa11-0451-4000-b000-000000000000"

AccConfig = "f000aa12-0451-4000-b000-000000000000"

AccPeriod = "f000aa13-0451-4000-b000-000000000000"

PRINT "COUNT", devices.Count

IF devices.Count < 1 THEN STOP

device = devices.Get(1)

PRINT “SensorTag Address”, device.Init()

REM Tell the SensorTag to enable the Accelerometer

REM Config=1 means enable

REM Period=20 means get data fast (50 per second)

device.WriteBytes(AccService, AccConfig, 1)

device.WriteBytes(AccService, AccPeriod, 100)

REM 1=Notify (2=Indicate 0=None)

device.WriteCallbackDescriptor (AccService, AccData, 1)

device.AddCallback (AccService, AccData, “WriteAcc”)

REM

Guide to Using Best Calculator Page | 293

REM Wait a little while and then turn off the Accelometer

REM

FOR time = 1 TO 10

 PAUSE 50

 PRINT AT 1,1 time

 PAUSE 50

 PRINT AT 1,1 " (clear)"

NEXT time

REM

REM Turn off the accelerometer; turn off notify; remove callback

REM

device.WriteCallbackDescriptor (AccService, AccData, 0)

device.WriteBytes(AccService, AccConfig, 0)

device.RemoveCallback (AccService, AccData, “WriteAcc”)

FUNCTION WriteAcc(device, x, y, z)

 Screen.ClearLine(3)

 PRINT x, y, y

END

39.11 EX: BC BASIC QUICK SAMPLES
A set of the most common programs people need. Includes a tip

program, money conversion, miles per gallon, and more.

39.11.1 Colorful Countdown

A bright countdown display. Will count down for the number of seconds

in the calculator window. The minimum countdown is 5 seconds, and

the maximum is 60 seconds.

value = Calculator.Value

IF value < 5 THEN value = 5

IF value > 60 THEN value = 60

PRINT "Count down!"

Guide to Using Best Calculator Page | 294

REM anitime sets the speed of the color changes

REM when set low (like 5), the colors really flash quickly

REM when set to 50, the color changes with the display

anitime = 25

ctime = 0

display = value

FOR i=0 TO (value*50) STEP anitime

color = color + 1

IF color >= 7 THEN color = 1

CLS color

PrintTitle (1, "Colorful Countdown")

PrintCenter (display)

PAUSE anitime

ctime = ctime + anitime

IF ctime < 50 THEN NEXT i

ctime = ctime - 50

display = display - 1

NEXT i

PrintCenter ("Countdown Complete")

FUNCTION PrintTitle(row, str)

lmargin = 1+INT ((Screen.W - LEN str) / 2)

IF (lmargin < 1) THEN lmargin = 1

PRINT AT row,lmargin str

RETURN

FUNCTION PrintCenter (str)

lmargin = 1+INT ((Screen.W - LEN str) / 2)

IF (lmargin < 1) THEN lmargin = 1

row = INT ((Screen.H) / 2)

PRINT AT row,lmargin str

RETURN

Guide to Using Best Calculator Page | 295

39.11.2 Grams of Fat to Calories
Takes the value already in the calculator and converts it from grams of

fat to calories. This program assumes that all fat is 9 calories per gram.

value = Calculator.Value

retval=value * 9

Calculator.Message = "Converted " + value + " grams of fat to

calories"

CLS BLUE

PRINT "Convert Grams of Fat to Calories"

PRINT "Input="; value

PRINT " "

PRINT "There are 9 calorie per gram of fat"

PRINT " "

PRINT "Calories="; retval

STOP retval

39.11.3 Miles per Gallon
Calculates mile per gallon given number of miles driven and total gallons

of gas.

CLS

PRINT "Calculating Miles Per Gallon"

PRINT " "

miles = INPUT DEFAULT 100 PROMPT "How many miles were driven?"

gallons = INPUT DEFAULT 4 PROMPT "How many gallons did you

need?"

retval = mpg(miles, gallons)

PRINT "Miles driven="; miles

PRINT "Gallons used="; gallons

PRINT "MPG="; retval

IF NOT Memory.IsSet ("PreviousMpg") THEN GOTO 40

Guide to Using Best Calculator Page | 296

lastMpg = Memory.PreviousMpg

deltaMpg = retval - lastMpg

PRINT "Last time="; lastMpg

IF ABS (deltaMpg) > 1.5 THEN GOTO 10

PAPER GREEN

PRINT "MPG is about the same"

GOTO 40

10 IF deltaMpg >= 1.5 THEN GOTO 20

PAPER RED

PRINT "MPG has decreased!"

GOTO 40

20 PAPER GREEN

PRINT "MPG has increased!"

GOTO 40

40 REM

Memory.PreviousMpg = retval

STOP retval

FUNCTION mpg (Miles, Gallons)

Retval = Miles / Gallons

RETURN Retval

39.11.4 Right Triangle calculator
Uses the Pythagorean theorem to calculate the hypotenuse of a right

triangle based on the other two sides.

REM Calculate the hypotenuse of a triangle

CLS BLUE

PRINT "Right triangle calculator"

PRINT " "

A = INPUT DEFAULT 3 PROMPT “Enter the first side”

Guide to Using Best Calculator Page | 297

B = INPUT DEFAULT 4 PROMPT “Enter the second side”

C = hypotenuse (A, B)

PRINT "First side=";A

PRINT "Second side=";B

PRINT "Hypotenuse=";C

PRINT " "

PRINT "Calculation is √ (A**2 + B**2)"

STOP C

REM Calculate the hypotenuse from A and B

FUNCTION hypotenuse (A, B)

C=2 √ (A**2 + B**2)

RETURN C

39.11.5 Tip Calculator
A new program for you to edit

value = Calculator.Value

CLS GREEN

TEST()

PRINT "Tip Calculator"

PRINT " "

PRINT " 5% tip of "; value; " is "; Tip(value, 5)

PRINT " 10% tip of "; value; " is "; Tip(value, 10)

PRINT " 15% tip of "; value; " is "; Tip(value, 15)

PRINT " 18% tip of "; value; " is "; Tip(value, 18)

PRINT " 20% tip of "; value; " is "; Tip(value, 20)

PRINT " "

Calculator.Message = "15% tip of " + value + " is " + Tip(value, 15)

STOP 0+Tip(value, 15)

REM We need a fancy function because we need to format the number

REM nice and neat. It should be calculated to the nearest penny

exactly.

Guide to Using Best Calculator Page | 298

FUNCTION Tip(value, percent)

raw = value * (percent/100)

round = Math.Round (raw * 100) / 100

fraction = round - Math.Truncate(round)

fraction = Math.Round (fraction * 100)

IF (fraction < 10) THEN fraction = "0" + fraction

top = "" + Math.Truncate(round) + "." + fraction

RETURN top

FUNCTION TestOne (value, percent, expected)

actual = Tip (value, percent)

IF (actual ≅ expected) THEN RETURN 0

PRINT "ERROR; TIP ";value; " pct "; percent

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

REM Tip returns a string, not a number

nerror = nerror + TestOne (100, 5, "5.00")

nerror = nerror + TestOne (76, 15, "11.40")

nerror = nerror + TestOne (140, 15, "21.00")

IF (nerror > 0) THEN PRINT "HORIZON NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

RETURN nerror

39.11.6 Welcome to BC BASIC
Describes BC BASIC for new users

CLS BLUE

PRINT "WELCOME TO BC BASIC!"

PRINT " "

PRINT "You can program the P1 to P5 keys"

Guide to Using Best Calculator Page | 299

PRINT "to perform ANY function you want"

PRINT "using Best Calculator BASIC"

PRINT " "

PRINT "Tap the BC BASIC button to get started"

PRINT " - there is full help available"

PRINT " - there are lots of samples"

PRINT " - you can get started right away"

39.12 EX: FILES, CSV AND JSON, HTML, FLOW
Demonstrates how to read and write files, including CSV and JSON data

using the File object and the String.Escape and String.Parse function.

Demonstrates how to use the HTML functionality and includes a longer

example with Microsoft Flow.

39.12.1 Appending to a file

Demonstrates picking and appending to a file. Each call to AppendLine()

and AppendText() will write to the end of the file.

REM

REM Demonstrate AppendPicker, AppendText and AppendLine

REM

file = File.AppendPicker("CSV file", “.csv”, "test.csv")

IF (file.IsError)

 REM file will have a error message

 PRINT file

 STOP

END IF

PRINT "SIZE", file.Size()

IF (file.Size()= 0) THEN file.AppendLine(“time,data”)

now = DateTime.GetNow()

REM

REM Use an array to make

REM perfect CSV data

REM

Guide to Using Best Calculator Page | 300

DIM data(2)

data(1) = now.Time

data(2) = 42.42

file.AppendText (String.Escape(“csv”, data))

39.12.2 Http.Get(url, headers) reads data from the internet
Demonstrates downloading data from the internet using Http.Get(url,

headers). The resulting JSON data is parsed into an array.

REM Demonstrate downloading from the internet

REM

REM Download content from a news feed

REM Make sure the download was OK

REM Parse the JSON into data

REM

url = "https://hacker-

news.firebaseio.com/v0/item/8863.json?print=pretty"

result = Http.Get (url)

IF (result.IsError)

 REM Did not get data

 CLS RED

 PRINT "Unable to download URL"

 PRINT "ErrorCode", result.ErrorCode

 PRINT "ErrorString", result.ErrorString

ELSE

 REM All OK

 CLS GREEN

 PRINT "Downloaded from URL"

 PRINT "Status", result.StatusCode

 PRINT "Reason", result.ReasonPhrase

 REM PRINT "Content", result.Content

 REM Now parse it as json

 REM You can pull individual bits out

 data = String.Parse("json", result.Content)

Guide to Using Best Calculator Page | 301

 PRINT "data.by", data.by

 PRINT "data.title", data.title

 PRINT "data", data.Count

 REM You can also pull data by index

 FOR i=1 TO data.Count

 PRINT i, data[i]

 NEXT i

END IF

39.12.3 Microsoft Flow example
A longer example showing how to trigger Microsoft Flow using HTML.

Data is put into an array and converted to JSON format using

String.Escape ("json", list); the value is then sent to a Microsoft trigger

HTML endpoint using the Http.Post(url, data, headers) method.

CLS BLUE

REM

REM The Microsoft Flow trigger URL is stored in the memory area

REM

memory = "Microsoft.Flow Example URL"

url = Memory.GetOrDefault (memory, "")

url = INPUT DEFAULT url PROMPT "Microsoft Flow URL"

Memory[memory] = url

REM

REM Set up the constant monitoring values

REM

min = 30

max = 40

deviceName = "My device"

sensor = "temperature"

Guide to Using Best Calculator Page | 302

REM

REM Set up the sensor device.

REM This program uses data from the MetaWear device

REM

device = Bluetooth.PickDevicesName (“MetaWear”)

IF device.IsError

 CLS RED

 PRINT "No device picked"

 STOP

END IF

meta = device.As ("MetaMotion")

meta.TemperatureSetup(1, "Temperature")

REM

REM Main loop; will keep on spinning and

REM asking for updated temperature readings.

REM

ExitRequested = 0

MAXTIME=1000

FOR time=0 TO MAXTIME

 PAUSE 50

 meta.TemperatureRead()

 IF (ExitRequested > 0) THEN time = MAXTIME

NEXT time

REM

REM Callback when temperature changes

REM

FUNCTION Temperature(ble, celcius)

 GLOBAL url

 GLOBAL deviceName

 GLOBAL sensor

 GLOBAL min

 GLOBAL max

 time = DateTime.GetNow()

Guide to Using Best Calculator Page | 303

 REM Convert to Fahrenheit

 data = celcius * 9 / 5 + 32

 Screen.ClearLine (9)

 Screen.ClearLine (10)

 Screen.ClearLine (11)

 PRINT AT 9,2 "TIME", time.Time

 PRINT AT 10,2 "TEMP", data

 IF (data < min OR data > max)

 PRINT AT 11,1 "SENDING DATA"

 SendData (url, data, time, deviceName, sensor, min, max)

 GLOBAL ExitRequested

 ExitRequested = 1

 END IF

END

REM

REM Format and send data to Microsoft Flow

REM

FUNCTION SendData(url, data, time, deviceName, sensor, min, max)

 REM

 REM Put the data into correct JSON form

 REM

 DIM datalist()

 datalist.AddRow ("data", data)

 datalist.AddRow ("time", time)

 datalist.AddRow ("device", deviceName)

 datalist.AddRow ("sensor", sensor)

 datalist.AddRow ("min", min)

 datalist.AddRow ("max", max)

 json = String.Escape ("json", datalist)

 PRINT json

 REM Microsoft Flow demands that data be passed using the

 REM a Content-Type of application/json.

Guide to Using Best Calculator Page | 304

 DIM header()

 header[1] = "Content-Type: application/json"

 result = Http.Post (url, json, header)

RETURN result

39.12.4 Read Entire File
Demonstrates how to use File.ReadPicker to pick and read an entire file

REM

REM Demonstrate the File.ReadPicker

REM

CLS GREEN

PRINT "Demonstrate reading a file"

file = File.ReadPicker (".txt")

IF (file.IsError)

 REM file has an error message

 PRINT "file.IsError is TRUE"

 PRINT file

 STOP

END IF

PRINT "Size is ", file.Size()

REM ReadAll will read the entire file as single text.

fulltext = file.ReadAll()

PRINT "The entire file"

PRINT fulltext

PRINT " "

REM

REM ReadLines will read the entire file and split it

REM into individual lines.

REM

lines = file.ReadLines()

PRINT "Count of lines", lines.Count

Guide to Using Best Calculator Page | 305

IF (lines.Count > 1) THEN PRINT "First line", lines[1]

39.12.5 Reading a CSV file
Ues the File.ReadPicker() to pick a CSV file. It's read in and parsed using

String.Parse ("csv", data-string) and the results are printed

CLS BLUE

file = File.ReadPicker (".csv")

IF (file.IsError)

 REM file will contain an error string

 PRINT "ERROR", file

 STOP

END IF

alltext = file.ReadAll()

REM will print several lines of data

PRINT "All text", alltext

csv = String.Parse ("csv", alltext)

header = csv[1]

data = csv[2]

PRINT "HEADER", header(1), header(2)

FOR index = 2 TO csv.Count

 data = csv(index)

 PRINT index-1, data(1), data(2)

NEXT index

39.12.6 Writing to a file (including CSV)
Demonstrates picking and writing to a file. The first WriteText to a

picked file will overwrite the contents; after that each additional

WriteText will append to the file. It's easy to make a CSV (comma

seperated file) using the String.Escape("csv", data) method.

REM

REM Demonstrate WritePicker, WriteText and WriteLine

Guide to Using Best Calculator Page | 306

REM

file = File.WritePicker("CSV file", “.csv”, "test.csv")

IF (file.IsError)

 REM file will have a error message

 PRINT file

 STOP

END IF

file.WriteLine(“time,data”)

now = DateTime.GetNow()

REM

REM Use an array to make

REM perfect CSV data

REM

DIM data(2)

data(1) = now.Time

data(2) = 42.42

file.WriteText (String.Escape(“csv”, data))

39.13 EX: FINANCIAL
Sample financial programs for ROI (Return on Investment), Present and

Future value, and more.

39.13.1 Common Tip Values

Starts with the value already in your calculator, and comes up with a

range of tips (5%, 10%, 15%, 18%, 20%)

value = Calculator.Value

CLS BLACK

TEST()

PRINT "5% tip of "; value; " is "; Tip(value, 5)

PRINT "10% tip of "; value; " is "; Tip(value, 10)

PRINT "15% tip of "; value; " is "; Tip(value, 15)

Guide to Using Best Calculator Page | 307

PRINT "18% tip of "; value; " is "; Tip(value, 18)

PRINT "20% tip of "; value; " is "; Tip(value, 20)

Calculator.Message = "15% tip of " + value + " is " + Tip(value, 15)

STOP 0+Tip(value, 15)

REM We need a fancy function because we need to format the number

REM nice and neat. It should be calculated to the nearest penny

exactly.

FUNCTION Tip(value, percent)

raw = value * (percent/100)

round = Math.Round (raw * 100) / 100

fraction = round - Math.Truncate(round)

fraction = Math.Round (fraction * 100)

IF (fraction < 10) THEN fraction = "0" + fraction

top = "" + Math.Truncate(round) + "." + fraction

RETURN top

FUNCTION TestOne (value, percent, expected)

actual = Tip (value, percent)

IF (actual ≅ expected) THEN RETURN 0

PRINT "ERROR; TIP ";value; " pct "; percent

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

REM Tip returns a string, not a number

nerror = nerror + TestOne (100, 5, "5.00")

nerror = nerror + TestOne (76, 15, "11.40")

nerror = nerror + TestOne (140, 15, "21.00")

IF (nerror > 0) THEN PRINT "HORIZON NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

RETURN nerror

Guide to Using Best Calculator Page | 308

39.13.2 Compound Interest
Calculates compound interest

REM

REM Calculates the interest earned on a loan.

REM Loan terms and interest is given per year; the

REM interest is compounded monthly.

REM

TEST()

P = INPUT DEFAULT 1000 PROMPT "Principal (original balance)"

RY = INPUT DEFAULT 12 PROMPT "Rate per year (enter 3% as 3)"

NY = INPUT DEFAULT 1 PROMPT "Number of years"

C = CompoundInterest(P, RY, NY)

Calculator.Message = "Compound interest earned"

STOP C

FUNCTION CompoundInterest(P, RY, NY)

R = RY / 1200

N = NY * 12

C = P * ((1 + R)**N - 1)

RETURN C

FUNCTION TestOne (P, RY, NY, expected)

actual = CompoundInterest(P, RY, NY)

actual = Math.Round (actual * 100) / 100

IF (actual ≅ expected) THEN RETURN 0

PRINT "ERROR; P ";P; " RY "; RY

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

nerror = nerror + TestOne (1200, 12.49, .5, 76.92)

Guide to Using Best Calculator Page | 309

nerror = nerror + TestOne (1100, 3.2, 2, 72.60)

IF (nerror > 0) THEN PRINT "CompoundInterest NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

RETURN nerror

39.13.3 Doubling Time
Calculate the time it takes to double an investment given a rate of

return. The rate of return is in percent; 12% is represented as 12.

REM Takes the value in the calculator as a percent (e.g., 12% is 12)

REM divides by 100 to get computer-type percents (0.12)

REM values are in YEARS, but interest is assumed to compound

MONTHLY.

REM Example: at a rate of "6" (6%), money will double in about 11.58

years.

CLS BLACK

TEST()

yr = Calculator.Value

dt = DoublingTime(yr)

Calculator.Message = "Doubling Time in years at " + yr + "% per year"

STOP dt

REM Doubling time in years given a per-year interest rate that

compounds monthly

REM yr is percent interest rate; e.g., give 4.25% as 4.25

FUNCTION DoublingTime(yr)

r = yr / 100

REM divide by 12 to get the montly rate

r = r / 12

dt = LN(2) / LN(1 + r)

REM dt starts off in months, but we want to present years, so divide

by 12.

Guide to Using Best Calculator Page | 310

dt = dt / 12

Calculator.Message = "Doubling Time in years at " + yr + "% per year"

RETURN dt

FUNCTION TestOne (yr, expected)

actual = DoublingTime(yr)

actual = Math.Round (actual * 100) / 100

IF (actual ≅ expected) THEN RETURN 0

PRINT "ERROR; DoublingTime "; yr

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

nerror = nerror + TestOne (6, 11.58)

nerror = nerror + TestOne (6.35, 10.94)

IF (nerror > 0) THEN PRINT "DoublingTime NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

RETURN nerror

39.13.4 Future Value
Calculates the future value of money today given a period of time and

an interest rate.

REM Future value uses the standard formula FV = PV * (1+r)**n

REM where PV = present value (e.g., money to invest)

REM r is the interest rate (3% is .03 in the formula, but this program

lets the user enter '3' for 3%

REM n is the number of periods. This must match the interest rate

(e.g., either both are 'per year' or both are 'per month')

REM Good practice to run the TEST program to make sure the

calculations are OK.

Guide to Using Best Calculator Page | 311

TEST()

PV = INPUT DEFAULT 900 PROMPT "Present value"

n = INPUT DEFAULT 3 PROMPT "How far into the future (years)"

r = INPUT DEFAULT 3 PROMPT "Interest rate (per year). Enter 3 for

3%"

r = r / 100

FV = FutureValue(PV, n, r)

Calculator.Message = "FV of " + PV + " at " + r*100 + "%"

STOP FV

FUNCTION FutureValue(PV, n, r)

FV = PV * ((1+r)**n)

RETURN FV

FUNCTION TestOne(PV, n, r, expected)

nerror = 0

actual = FutureValue(PV, n, r)

IF actual ≅ expected THEN GOTO 10

nerror = nerror + 1

PRINT "ERROR: FutureValue"

PRINT "PV=";PV; " n="; n; " r=";r

PRINT "expected="; expected

PRINT "actual=";actual

10 REM

RETURN nerror

FUNCTION TEST()

nerror = 0

nerror = nerror + TestOne (1000, 5, .1, 1610.51)

RETURN nerror

39.13.5 Money Conversion
Simple program to convert from one currency to another. The program

will always prompt for the conversion rate, but will remember the last

conversion rate you used. This program does not go on-line to get the

current set of conversion rates (it's not possible in BC BASIC)

Guide to Using Best Calculator Page | 312

REM

REM The defaults here are rougly the conversion rate from yen to

REM australian dollars. 1 yen is about 0.011 australian dollar;

REM 10000 yen is therefore about 110 australian dollars.

REM

rate = INPUT DEFAULT Memory.GetOrDefault ("ConversionRate",

0.011) PROMPT "Conversation rate <from> to <to> [e.g., yen to

australian dollars]"

Memory.ConversionRate = rate

amount = INPUT DEFAULT Memory.GetOrDefault

("ConversionAmount", 10000) PROMPT "Amount to convert [e.g.,

amount in yen]"

Memory.ConversionAmount = amount

value = amount * rate

Calculator.Message = "Convert " + amount + " at a rate of " + rate +

" is " + value

Calculator.Value = value

39.13.6 Present Value
Calculates the present value (PV) of a sum of money (the future value,

FV) given an interest rate and the number of years in the future that the

sum of money will be paid.

REM Future value uses the standard formula PV = FV / (1+r)**n

REM where PV = present value (e.g., money to invest)

REM FV is the value of the investment in the future

REM r is the interest rate (3% is .03 in the formula, but this program

lets the user enter '3' for 3%

REM n is the number of periods. This must match the interest rate

(e.g., either both are 'per year' or both are 'per month')

REM Good practice to run the TEST program to make sure the

calculations are OK.

TEST()

Guide to Using Best Calculator Page | 313

FV = INPUT DEFAULT 900 PROMPT "Future value (amount of money in

the future)"

n = INPUT DEFAULT 3 PROMPT "When will the money be paid"

r = INPUT DEFAULT 3 PROMPT "Interest rate (per year). Enter 3 for

3%"

REM Some people want to type 10 for 10%

r = r / 100

PV = PresentValue (FV, n, r)

Calculator.Message = "PV of " + FV + " at " + r*100 + "%"

STOP PV

FUNCTION PresentValue(FV, n, r)

PV = FV / ((1+r)**n)

RETURN PV

FUNCTION TestOne(FV, n, r, expected)

nerror = 0

actual = PresentValue(FV, n, r)

IF actual ≅ expected THEN GOTO 10

nerror = nerror + 1

PRINT "ERROR: PresentValue"

PRINT "FV=";FV; " n="; n; " r=";r

PRINT "expected="; expected

PRINT "actual=";actual

10 REM

RETURN nerror

FUNCTION TEST()

nerror = 0

nerror = nerror + TestOne (900, 3, .1, 676.18)

nerror = nerror + TestOne (570, 1, .1, 518.18)

nerror = nerror + TestOne (570, 3, .1, 428.25)

RETURN nerror

39.13.7 Return on Investment
Also called ROI, the return on investment shows the percentage return

on an investment.

Guide to Using Best Calculator Page | 314

REM ROI

EARNINGS = INPUT DEFAULT 1100 PROMPT "Earnings on the

investment"

INITIAL = INPUT DEFAULT 1000 PROMPT "Initial investment"

ROI = (EARNINGS - INITIAL) / INITIAL

Calculator.Message = "ROI when earnings is " + EARNINGS + " on an

intial investment of " + INITIAL

STOP ROI

39.14 EX: REAL ESTATE
Convert square feet to acres and more

39.14.1 Acres to square feet

Converts acres from from the calculator display into square feet

value = Calculator.Value

retval=value * 43560

Calculator.Message = "Converted " + value + " acres into square feet"

STOP retval

39.14.2 Debt to Income calculations
Given two numbers -- the borrower's yearly income and the bank's

income limit (e.g., 31 for 31% allowed for housing), calculates the

allowed amount per month for housing.

income = INPUT DEFAULT 100000 PROMPT "What is the person's

yearly income"

monthlyIncome = income / 12

housingPercent = INPUT DEFAULT 31 PROMPT "What is the allowed

housing debt to income ratio?"

maxPercent = INPUT DEFAULT 43 PROMPT "What is the allowed debt

to income ratio? "

Guide to Using Best Calculator Page | 315

allowedMonthlyHousing = INT (monthlyIncome *

housingPercent/100)

allowedMonthlyTotal = INT (monthlyIncome * maxPercent/100)

CLS

PRINT "Income per month="; INT(monthlyIncome)

PRINT "Housing per month=";allowedMonthlyHousing

PRINT "Total monthly debt=";allowedMonthlyTotal

PRINT "Other debt=";allowedMonthlyTotal-allowedMonthlyHousing

Calculator.Message = "For year income of " + income + " housing per

month is " + allowedMonthlyHousing

STOP allowedMonthlyHousing

39.14.3 Minimum and Maximum density
Demonstrates one way to calculate the minimum and maximum

number of units that can be built on a lot given its size in acres. The

rules roughly match those of Redmond, WA for residential

neighborhoods (Redmond code 20C.30.25) as of 2015. You will need to

suply the R type (e.g., 1 for R1, 4 for R4).

R = INPUT DEFAULT 6 PROMPT "What is the R type zoning district?

Enter .2 for type RA-5"

grossAcres = INPUT DEFAULT 2 PROMPT "What is the gross site area

(acres)?"

netAcres = INPUT DEFAULT grossAcres PROMPT "What is the net

buildable area (acres)?"

REM Sample: R=6 grossAcres=2 netAcres=1.5 result in minimum 7

maximum 12 house

allowed = Math.Round (RtoAllowedDensity(R) * grossAcres)

minimum = Math.Round (RtoMinimumDensity(R) *

RtoAllowedDensity(R) * netAcres)

REM How much more land do you need to build 1 more house?

Guide to Using Best Calculator Page | 316

start = RtoAllowedDensity(R) * grossAcres

fraction = start - Math.Floor (start)

IF fraction >= .5 THEN next = Math.Ceiling(start) + .5

IF fraction < .5 THEN next = Math.Floor(start) + .5

delta = next - start

deltaAcres = delta / RtoAllowedDensity(R)

CLS

PRINT "You can build up to "; allowed; " houses"

PRINT "You must build at least "; minimum; " houses"

PRINT "You need "; deltaAcres; " more acres to build 1 more house"

STOP

REM The R number exactly matches the allowed density for all values

REM Except RA-5 which must be entered as .2

FUNCTION RtoAllowedDensity (R)

RETURN R

REM There are three minimum density sizes in Redmond

FUNCTION RtoMinimumDensity(R)

IF R < 8 THEN RETURN .8

IF R < 18 THEN RETURN .75

RETURN .65

39.14.4 Rectangle in feet to acres
Given a lot size in feet, calculates the lot size in acres

length = INPUT DEFAULT 80 PROMPT "Enter the first length in feet"

width = INPUT DEFAULT 11 PROMPT "Enter the second length in feet"

sqfeet = length * width

acres=sqfeet / 43560

Calculator.Message = "Lot " + length + "x" + width + " is " + acres +

" acres"

STOP retval

Guide to Using Best Calculator Page | 317

39.14.5 Square feet to acres
Converts the current values in the calculator from square feet to acres.

value = Calculator.Value

retval=value / 43560

Calculator.Message = "Converted " + value + " square feet into acres"

STOP retval

39.15 EX: SPACE AND ASTRONOMY
Programs for astronomy and space

39.15.1 Arc Length

A COGO program to calculate an arc length or a circle given the radius

and the angle (in degrees)

REM 3959 is the radius of the earth in miles

TEST()

radius = INPUT DEFAULT 3959 PROMPT "Radius of the circle"

degrees = INPUT DEFAULT 45 PROMPT "Angle in degrees"

arc = ArcLength(degrees, radians)

Calculator.Message = "Given radius=" + radius + " and angle=" +

angle + " arc is " + arc

STOP arc

FUNCTION ArcLength(degrees, radius)

radians = Math.DtoR (degrees)

circum = Math.PI * 2 * radius

arc = circum * radians / (2 *Math.PI)

RETURN arc

FUNCTION TestOne (degrees, radius, expected)

actual = ArcLength (degrees, radius)

IF (actual ≅ expected) THEN RETURN 0

Guide to Using Best Calculator Page | 318

PRINT "ERROR; ArcLength ";h

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

nerror = nerror + TestOne (3959, 45, 3109.391)

nerror = nerror + TestOne(10, 90, 15.707963)

nerror = nerror + TestOne(0, 90, 0)

nerror = nerror + TestOne(10, 0, 0)

IF (nerror > 0) THEN PRINT "HORIZON NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

RETURN nerror

39.15.2 AU to Meters
Converts a distance in AU (Astronomical units) to a distance in meters

IMPORT FUNCTIONS FROM "Conversion Library"

from = Calculator.Value

m = ConvertToMeters(from, "au")

Calculator.Message = "Convert " + from + " au into " + m + "

meters"

STOP m

39.15.3 Conversion Library
A set of functions to convert between AU and kilometer and between

Parsecs, Lightyears and Meters

FUNCTION ConvertToMeters(distance, units)

IF units = "au" THEN RETURN distance * 149597870700

IF units = "earthradius" THEN RETURN distance * 6371000

Guide to Using Best Calculator Page | 319

IF units = "lightsecond" THEN RETURN distance * 299792458

IF units = "lightyear" THEN RETURN distance * 9.4605284E15

IF units = "parsec" THEN RETURN distance * 3.08567758E16

CONSOLE "ERROR: Astronomy Conversion library: Unknown units " +

units

RETURN Math.NaN

CLS BLACK

TEST()

FUNCTION TestOne (distance, units, expected)

actual = ConvertToMeters (distance, units)

IF (actual ≅ expected) THEN RETURN 0

IF (Math.IsNaN(expected) AND Math.IsNaN(actual)) THEN RETURN 0

PRINT "ERROR; ConvertToMeter "; distance; " "; units

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

REM Test AU with data from Mercury and Neptune

nerror = nerror + TestOne (.387, "au", 5.7894E10)

nerror = nerror + TestOne (30.06, "au", 4.4969E12)

nerror = nerror + TestOne (1, "lightsecond", 299792.458E3)

REM Wikipedia says the distance Earth to Moon is 1.282

nerror = nerror + TestOne (1.28222, "lightsecond", 384400E3)

REM data from Bing.com

nerror = nerror + TestOne (1, "lightyear", 9.4605284E15)

nerror = nerror + TestOne (1, "earthradius", 6371E3)

nerror = nerror + TestOne (1, "parsec", 3.08567758E16)

nerror = nerror + TestOne (1, "NOSUCHUNIT", Math.NaN)

Guide to Using Best Calculator Page | 320

IF (nerror > 0) THEN PRINT "Astronomical Conversion

NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

RETURN nerror

39.15.4 Distance to horizon
Calculates the distance to the horizon in miles given a height above the

Earth in feet.

h = Calculator.Value

TEST ()

d = Distance (h)

Calculator.Message = "Given a height of " + h + " feet, the distance to

horizon in miles is " + d

STOP d

FUNCTION Distance (height)

d = 1.22 * SQR(height)

RETURN d

FUNCTION TestOne (h, expected)

actual = Distance(h)

IF (actual ≅ expected) THEN RETURN 0

PRINT "ERROR; DistanceToHorizon ";h

PRINT "Expected "; expected

PRINT "Actual "; actual

PRINT "Difference "; actual-expected

RETURN 1

FUNCTION TEST ()

nerror = 0

nerror = nerror + TestOne (100, 12.2)

nerror = nerror + TestOne(22841, 184.382)

PRINT "HORIZON NERROR=";nerror

IF (nerror > 0) THEN PAPER RED

Guide to Using Best Calculator Page | 321

RETURN nerror

39.15.5 Lightyears to Parsecs
Converts a distance in parsecs to a distance in light-years

IMPORT FUNCTIONS FROM "Conversion Library"

from = Calculator.Value

m = ConvertToMeters(from, "lightyear")

inv = ConvertToMeters(1, "parsec")

to = m / inv

Calculator.Message = "Convert " + from + " into " + to + " parscecs"

STOP to

39.15.6 Meters to AU
Converts a distance in meters to a distance in AU (Astronomical units)

IMPORT FUNCTIONS FROM "Conversion Library"

from = Calculator.Value

inv = ConvertToMeters(1, "au")

to = from / inv

Calculator.Message = "Convert " + from + " into " + to + " au"

STOP to

39.15.7 Parsecs to Lightyears
Converts a distance in parsecs to a distance in light-years

IMPORT FUNCTIONS FROM "Conversion Library"

from = Calculator.Value

m = ConvertToMeters(from, "parsecIES!")

m = ConvertToMeters(from, "parsec")

inv = ConvertToMeters(1, "lightyear")

Guide to Using Best Calculator Page | 322

to = m / inv

Calculator.Message = "Convert " + from + " into " + to + " light

years"

STOP to

39.15.8 Rocket Equation
The Tsiolkovsky rocket equation will tell you how much fuel you have to

burn in order to achieve some change in velocity (delta-v). You have to

provide the starting rocket weight (including fuel) and the rocket

effective exhaust velocity. The Space Shuttle effective exhaust velocity

is 4,400 m/s.

REM From https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

REM deltav = ve* ln (m0 / m1)

REM m0=initial mass

REM m1=final mass (after fuel is burnt)

REM ve = effective exhaust velocity (about 4400 for Space Shuttle

main engines)

REM Solve the equation for m1 to return (m0-m1), the amount of

propellant to burn

REM deltav = ve* ln (m0 / m1)

REM deltav / ve = ln(m0/m1)

REM exp(deltav / ve) = m0/m1

REM m0 / exp (deltav / ve) = m1

REM fuelburned = m0 - (m0 / exp(deltav/ve))

m0 = INPUT DEFAULT 727 PROMPT "Starting mass of the rocket (any

units)"

REM Sample specific impulse is from the Centaur rocket

isp = INPUT DEFAULT 450.5 PROMPT "Specific Impulse (in seconds)"

REM delta-v of about 6,900,000 is (approximately) the amount

needed to get to low earth orbit

Guide to Using Best Calculator Page | 323

deltav = INPUT DEFAULT 5000 PROMPT "What delta-v do you need?

(in meters/second)"

CLS GREEN

ve = SpecificImpulseToEffectiveVelocity(isp)

fuelburned = FuelBurned (m0, deltav, ve)

m1 = m0-fuelburned

PRINT "Starting rocket mass="; m0

PRINT "Specific Impulse="; isp

PRINT "Exhaust Velocity="; ve

PRINT "Change in velocity=";deltav; "(m/s)"

PRINT "Fuel burned=";fuelburned

PRINT "Final rocket mass=";m1

IF (m1 > 0) THEN GOTO 10

PRINT "Ran out of fuel!"

PAPER RED

10 REM done

Calculator.Message = "You used " + fuelburned + "fuel"

STOP fuelburned

FUNCTION SpecificImpulseToEffectiveVelocity (Isp)

g0 = 9.81

Ve = g0 * Isp

RETURN Ve

FUNCTION FuelBurned (m0, deltav, ve)

ratio = 1 / EXP (deltav / ve)

m1 = m0 * ratio

fuelburned = m0 - m1

RETURN fuelburned

Guide to Using Best Calculator Page | 324

39.16 EX: STATISTICS
Sample programs for statistics

39.16.1 Finite Population Correction

Corrects the Margin of Error calcations when drawing from a finite

instead of infinit population.

IMPORT FUNCTIONS FROM "Sample Size Library"

population = INPUT DEFAULT 1000000 PROMPT "Enter the actual

population"

sample = INPUT DEFAULT 1000 PROMPT "Enter the number of

samples"

fpc = FPC (sample, population)

Calculator.Message = "Finite Population Correction for

population="+population

STOP fpc

39.16.2 Margin of Error
Calculates the margin of error for samping an infinite population given a

sample size

IMPORT FUNCTIONS FROM "Sample Size Library"

z = GetZ()

n = INPUT DEFAULT 1000 PROMPT "How many samples will you take?"

stddev = 0.5

REM 0.5 is a very conservative approach and applies a derate factor of

.25

REM chosing .1 would result in a derate of 0.09 which is not wildly

different

me = MarginOfError (z, n, stddev)

Calculator.Message = "Margin of error for sample size "+n

STOP me

Guide to Using Best Calculator Page | 325

39.16.3 Pfail
Returns the probability of failure by time t given an MTBF (mean time to

failure) value.

REM Note: MTBF is 1/lambda

TEST()

MTBF = INPUT DEFAULT 10 PROMPT "MTBF (Mean Time Before

Failure)"

T = INPUT DEFAULT 5 PROMPT "Time to calculate from"

P = Pfail (T, MTBF)

Calculator.Message = "Pfailure by time T given MTBF"

STOP P

FUNCTION Pfail (T, MTBF)

P = 1 - Math.E ** (- (T / MTBF))

RETURN P

FUNCTION TestOne (T, MTBF, Expected)

Actual = Pfail (T, MTBF)

IF (Actual ≅ Expected) THEN RETURN 0

PRINT "Pfail: T=";T;" MTBF="; MTBF

PRINT "Actual=";Actual

PRINT "Expected=";Expected

RETURN 1

FUNCTION TEST()

nerror = 0

nerror = nerror + TestOne (43800, 250000, 0.16071)

RETURN nerror

39.16.4 Sample Size
Calculates the sample size required to meet a desired margin of error

given a confidence limit.

Guide to Using Best Calculator Page | 326

REM Calculates a required Sample Size

REM You have to enter a Confidence (90, 95 or 99%)

REM You have to enter a margin of error (e.g., 3 to mean 3%)

REM

REM The code assume an infinite populate. Use the FPC (Finite

Population Correction)

REM if the population size is smaller.

REM

REM The code assumes a population stddev of 0.5; this is the most

REM conservative assumption.

REM

IMPORT FUNCTIONS FROM "Sample Size Library"

PRINT "Sample Size"

TEST()

z = GetZ()

me = INPUT DEFAULT 5 PROMPT "What is your required margin of

error in percent?"

me = me / 100

stddev = 0.5

Guide to Using Best Calculator Page | 327

REM 0.5 is a very conservative approach and applies a derate factor of

.25

REM chosing .1 would result in a derate of 0.09 which is not wildly

different

n = SampleSize(z, me, stddev)

STOP n

39.16.5 Sample Size Library
Useful functions for calculating sample size

REM A set of functions and tests for sample sizes

FUNCTION MarginOfError(z, n, stddev)

me = SQR ((z**2 * stddev * (1-stddev)) / n)

RETURN me

FUNCTION SampleSize(z, me, stddev)

n = z**2 * stddev * (1-stddev) / me**2

RETURN n

FUNCTION FPC(sample, population)

REM Finite Population Correction; corrects the Margin of Error

REM based on drawing from a finite (instead of infinite) population

ratio = (population - sample) / (population - 1)

fpc = SQR(ratio)

RETURN fpc

Guide to Using Best Calculator Page | 328

FUNCTION GetZ()

10 confidence = INPUT DEFAULT 95 PROMPT "Required confidence

level (one of 90, 95 or 99)"

z = Z(confidence)

IF (z = 0) THEN GOTO 10

RETURN z

FUNCTION Z(confidence)

IF (confidence = 90) THEN RETURN 1.645

IF (confidence = 95) THEN RETURN 1.96

IF (confidence = 99) THEN RETURN 2.576

RETURN 0

FUNCTION TestOne (confidence, n, me, stddev)

nerror = 0

z = Z(confidence)

nactual = SampleSize (z, me, stddev)

IF (nactual ≅ n) THEN GOTO 20

PRINT "ERROR: SampleSize (pt1)"

PRINT "z=";z

PRINT "me=";me

PRINT "expected n=";n

PRINT "actual n=";nactual

20 meactual = MarginOfError (z, n, stddev)

IF (meactual ≅ me) THEN GOTO 30

PRINT "ERROR: SampleSize (2)"

PRINT "z=";z

PRINT "n=";n

PRINT "expected me=";me

PRINT "actual me=";meactual

30 REM all done

Guide to Using Best Calculator Page | 329

RETURN nerror

FUNCTION TestFPC(sample, population, fpc)

nerror = 0

actual = FPC (sample, population)

IF (actual ≅ fpc) THEN RETURN 0

PRINT "ERROR: FPC"

PRINT "sample=";sample

PRINT "population=";population

PRINT "fpc=";fpc;" actual=";actual

RETURN nerror

FUNCTION QuickTest()

nerror = 0

nerror = nerror + TestFPC (1000, 1000000, 0.99950037)

nerror = nerror + TestFPC (20, 50, 0.78246)

nerror = nerror + TestOne (99, 1727.34, 0.030990321, 0.5)

nerror = nerror + TestOne (95, 1000, 0.030990321, 0.5)

nerror = nerror + TestOne (90, 704.4, 0.030990321, 0.5)

nerror = nerror + TestOne (95, 1000, 0.026838405, 0.25)

RETURN nerror

FUNCTION TEST()

nerror = QuickTest()

RETURN nerror

REM RUN the library in order to test it!

PRINT "Testing Sample Size Library"

TEST()

INDEX TO BEST CALCULATOR MANUAL

Guide to Using Best Calculator Page | 330

- (subtract), 93
- (subtract, BASIC), 92
- (subtract, Calculator), 21
!

(factorial) key, 31
M (store)

In Calculator Memory Page,
39

M (To Memory) key, 23
% (percent) key, 27
& (and) key, 44
() (parentheses, Calculator), 22
() (parenthesis)

when calling a function,
required, 91

() (parenthesis, BASIC)
in expressions, 91

*(multiply), 93
** (raise to the power), 92
/ (divide), 93
[] (square brackets)

in expressions, 91
^ (xor) key, 44
| (or) key, 44
~ (inverse) key, 44
+ (add), 93
+ (add, Calculator), 21
< (less than), 93
<= (less than or equal), 93
<> (not equal), 93
= (equal), 93
= (equals, Calculator), 21
> (greater than), 93
>= (greater than or equal), 93
± (change sign) key, 25
≪ (shift left) key, 46
≪+⃝ (rotate left) key,

46
≫ (shift right) key, 46

≫+⃝ (rotate right) key,
46

× (multiply, Calcualtor), 21
÷ (divide, Calculator), 21
√ (squarae root), 92
√ (square root) key, 25
∛ (cube root), 92
∛x key, 31
∜ (fourth root), 92
≅ (approximately equal), 93

⌫ (Delete) key, 22

◫ (word) key, 45

◫◫ (dword) key, 45

▯ (byte) key, 45
1/x (Inverse) key, 25
² (square), 92
2’s complement key, 44
2541, 189
³ (cube), 92
⁴ (fourth power), 92

∞ (infinity) key, 38
ABS (BASIC), 97
Abs key, 33
AccelerometerSetup, 189, 192
ACS (BASIC), 97
Add

array, 110
AddRow

array, 111
AlarmSetting, 186
Algebraic Entry, 21
Algebraic Entry System with

Hierarchy, 22
Algebraic Operating System, 22
AND, 94
And (&) key, 44
AppendLine

File, 128
AppendPicker

Guide to Using Best Calculator Page | 331

File, 128
AppendText

File, 128
array, 108
As

Bluetooth, device.As(), 161
ASCII Table, 60
ASN (BASIC), 97
assignment, 119
AsTotalSeconds

DateTime, 127
ATN (BASIC), 97
automatic graph, 147
Average

Example BASIC program, 109
B# (count bits) key, 44
BarometerSetup, SensorTag

2541, 189, 193
beLight, 174
bin key, 43
Binary numbers, 43
bind a program to a key, 75
Bluetooth, 155
Bluetooth object, 159
Bluetooth.Devices, 160
Boxplots, 54
ButtonSetup, SensorTag 2541,

190, 193

byte (▯) key, 45
C (clear) key, 22
c (speed of light) key, 38
Calculator.Message, 125
Calculator.Value, 125
Calendar calculations, 41
CALL, 105
callbacks, Bluetooth, 166
Carriage return, 104
CC2540T, 174
CE (clear entry) key, 22
Ceil key, 33

Chain calculations, 21
ChangeMode, 175, 187
characteristic, Bluetooth, 163
CHR, 99
Circle

Graphics, 145
Classical Statistics, 50
CLS, 106

clearing the screen manually,
78

CODE, 99
Comment (using REM), 123
Console, 84

CONSOLE command, 212
CONSOLE Command, 107
display or hide (toggle), 85
DUMP command, 212

Constants (Calculator), 38
Conversions

Between bases, 43
BTUs, 57
Bushels, 59
Calories, 57
Celsius, 58
Centimeters, 58
Cups, 59
degrees to radians, 28
Donuts, 57
Ergs, 57
Fahrenheit, 58
Feet, 58
Gallons, 59
Grains, 58
Grams, 58
Inches, 57
Joules, 57
Kelvin, 58
Kilograms, 58
Kilometers, 58
Kilowatt-Hours, 57

Guide to Using Best Calculator Page | 332

Liters, 59
Long tons, 58
Maund, 58
Meters, 58
Miles, 58
MMT, 58
Ounces, 58
Pecks, 59
Pints, 59
Pounds, 58
Quarts, 59
radians to degrees, 28
Rankine, 58
Sèr, 58
Short tons, 58
Therms, 57
Tolä, 58
Tonnes, 58
Troy Ounces, 58
Troy Pounds, 58
Yards, 58

Correlation coefficient, 52
COS (BASIC), 97
Cos key, 28
Count, 50

array, 110
count bits (B#) key, 44
csv

String.Escape, 150
String.Parse, 152

dr key, 28
data boxes, 49
Date

DateTime, 126
Date Calculations, 41
DateTime, 126
Day

DateTime, 126
DayOfWeek

DateTime, 126

dec key, 43
Decimal numbers, 43
degree and radians

In Calculator, 28
degrees key, 28
degrees of freedom, 53
Desktop Shortcut, 62
df, 53
DIM, 108
Direct Algebraic Logic, 22
DOTTI, 175
double

numbers stored as doubles,
87

DUMP, 111

dword (◫◫) key, 45
e key, 38
EE (scientific notation) key, 26
ELSE, 117
END, 123
Escape

String, 150
Escape (stop program) key, 83
EXP (BASIC), 97
exponent, BASIC, 137
exponential notation (BASIC),

87
exponential notation

(Calculator), 26
expressions, 90
F5 (run program) key, 83
Factorial (Calculator), 31
fff0, 177
fff0, NOTTI, 185, 188
fff3, 177
File, 128
First

RemoveAlgorithm, 110
Fixed character size screen, 84
floats, 87

Guide to Using Best Calculator Page | 333

Floor key, 33
Flux light, 180
Font size

indicator, 84
larger, 84
smaller, 84

FOR..NEXT loops, 112
Formatting (Calculator), 35
Frac key, 33
FUNCTION, 115
Get

Bluetooth.Devices, 160
Http, 131

GetAccelerometer, Hexiwear,
179

GetCalories, Hexiwear, 179
GetFirmwareRevision,

Hexiwear, 178
GetGyroscope, Hexiwear, 179
GetHeart, Hexiwear, 179
GetHumidity, Hexiwear, 179
GetLight, Hexiwear, 179
GetMagnetometer, Hexiwear,

179
GetManufacturerName,

Hexiwear, 178
GetMode, 179
GetNow

DateTime, 126
GetPower, Hexiwear, 178
GetPressure, Hexiwear, 179
GetSteps, Hexiwear, 179
GetTemperature, Hexiwear,

179
GLOBAL, 115
gn (gravitational constant) key,

38
GOSUB, 116
GOTO, 116
Graphics

Screen, 145
GraphY

Graphics, 147
Gregorian Calendar, 41
GUID, 163
GyroscopeSetup, SensorTag

2541, 190
Hebrew Calendar, 41
Herschel notation, 29
hex key, 43
Hex numbers, 43
Hexiwear, 178
Hijiri Calendar, 41
History of BASIC, 64
Hour

DateTime, 126
Http, 131
HumiditySetup, SensorTag

2541, 190, 193
IF - THEN, 117
IMPORT FUNCTIONS, 118
import package, 74
infinite loop (stopping), 83
Init

Bluetooth, 161
INPUT (operator, details), 96
INPUT (operator, preferred), 94
INPUT (statement, not

preferred), 119
INT (BASIC), 97
Integer key, 33
Integers, 87
Intercept, 52
Inverse Cos (calculator), 29
Inverse Sin (calculator), 29
Inverse Tan (calculator), 29
IRSetup, SensorTag 2541, 190,

194
IsError, 90
IsNaN, 90

Guide to Using Best Calculator Page | 334

IsNumber, 90
Iso8601

DateTime, 127
IsObject, 90
IsString, 90
json

String.Escape, 152
String.Parse, 153

Julian Calendar, 41
Keyboard calculator button, 63
LEDBlue, 180
LEFT, 98
LEN, 99
LET, 119
library

delete packagae, 77
export package, 77
how to display properties, 73
made up of packages, 72

libray
add package, 214

Light, 174
Line

Graphics, 145
Line ending

\n, 86
\r, 86
\v, 86

Linear Regression, 52, 55
Linear Regression Chart, 52
LN (BASIC), 97
ln key, 30
LoadScreenFromMemory, 176
log key, 30
log2 key, 30
Logarithms (Calculator), 30
Looping (FOR..NEXT loops), 112
M- (memory subtract) key, 24
M (recall)

In Calculator Memory Page,
39

M (Recall) key, 23
M-(memory subtract)

Calculator Memory Page, 39
M+ (memory add)

In Calculator Memory Page,
39

key, 24
MagicLight, 180
MagnetometerSetup,

SensorTag 2541, 191
Math.Abs, 134
Math.Acos, 134
Math.Asin, 134
Math.Atan, 134
Math.Atan2, 134
Math.Ceiling, 134
Math.Cos, 134
Math.Cosh, 134
Math.DtoR, 134
Math.E, 138
Math.Exp, 137
Math.Factorial, 138
Math.Floor, 134
Math.Frac, 135
Math.IsNaN, 138
Math.Log, 137
Math.Log10, 137
Math.Log2, 137
Math.Max, 135
Math.Min, 135
Math.Mod, 135
Math.NaN, 138
Math.PI, 138
Math.Pow, 137
Math.Round, 135
Math.RtoD, 134
Math.Sign, 136
Math.Sin, 134

Guide to Using Best Calculator Page | 335

Math.Sinh, 134
Math.Sqrt, 137
Math.Tan, 134
Math.Tanh, 134
Math.Truncate, 136
Max

array, 110
MaxCount

array, 110
MaxOf, 110
mbientlab.com, 181
Mean, 50
median, 51
Memory

M+ (memory add) key, 24
Memory Recall (M) key, 23
Memory Store (M) key, 23
Memory Subtract (M-) key,

24
Naming memory, 39

Memory Page, 23, 39, 41
Memory.<constant_name>, 140
Memory.GetOrDefault, 140
Memory.IsSet, 140
Memory[<expression>], 139
MetaMotion, 181
MetaWear, 181
MID, 98
mikroElektronika, 178
Min

array, 110
MinOf, 110
Minute

DateTime, 126
Mod (modulo) key, 31
Month

DateTime, 126
N (count), 50
Na (Avogaddro’s number) key,

38

NaN key, 38
NEXT, 112
NOT, 94
NOTTI, 186
oct key, 43
Octal numbers, 43
OR, 94
Or (|) key, 44
Output screen, 84

close, 85
CLS, 106
larger, 85
PRINT, 121
smaller, 85

P10 (10% percentile), 51
P90 (90% percentile), 51
package

about, 76
delete, 77
how to add, 214
how to display properties, 73
how to export, 77
how to import, 74
made up of programs, 78

Parentheses (Calculator), 21
Parse

String, 152
PAUSE, 120
Percent (%) key (%), 27
Percent Discount, 27
Percent Formatting (Calculator),

37
PI, 91
PickDevicesName, 161
Population Standard Deviation,

50
Post

Http, 132
PRINT, 121
program

Guide to Using Best Calculator Page | 336

about, 80
add, 78
delete, 81
edit, 79
edit dialog, 82
edit from the About dialog,

80
how to add, 215
how to bind to a program

key, 218
how to run, 217
properties, 79
run, 79
running from edit dialog, 82
saving while editing, 82

program list
how to display, 73

Programmer’s calculator, 43
Put

Http, 132
p-value, 53
Q1 (1st quartile), 51
Q2 (2nd quartile), 51
Q3 (3rd quartile), 51
rd key, 28
radians and degrees

(Calculator), 28
radians key, 28
RAND (set random seed), 122
Random

RemoveAlgorithm, 110
Random Numbers (BASIC), 122
Random Numbers (Calculator),

34
Read, Bluetooth device, 164
ReadAll

File, 129
ReadCachedByte, 164
ReadCachedBytes, 165
ReadLines

File, 129
ReadPicker

File, 129
ReadRawByte, 164
ReadRawBytes, 165
Recall (M), 23
Rect

Graphics, 145
Regression, 52
Relative Standard Deviation, 50
REM (comment), 123
RemoveAlgorithm

array, 110
RequestActive, 143
RequestRelease, 143
Reservoir Sampling

array, 110
Rfc1123

DateTime, 127
RIGHT, 98
RND, 91, 122
rnd key, 34
rnd N key, 34
Robust Statistics, 51
rotate left (≪+⃝) key, 46
rotate right (≫+⃝) key, 46
Round key, 33
Rounding (Calculator), 33
RSD, 50
Sales Tax, 27
Sample Standard Deviation, 50
save (export) package, 77
SaveScreenToMemory, 176
Scatterplots, 55
Scientific (exponential) notation

(BASIC), 87
Scientific (exponential)

Notation (Calculator), 26
screen clear key (BASIC), 78
Screen.ClearLine, 143

Guide to Using Best Calculator Page | 337

Screen.ClearLines, 143
Screen.H, 144
Screen.RequestActive, 143
Screen.RequestRelease, 143
Screen.W, 144
Second

DateTime, 126
SensorTag 2541 (original), 189,

192
SensorTag*, 189, 192
service, Bluetooth, 163
SetAlarmTime, 187
SetColor, beLight, 174
SetColor, MagicLight, 180
SetColor, NOTTI, 184, 187
SetColorCustom, NOTTI, 187
SetColumn, 176
SetName, 176
SetName, NOTTI, 187
SetNameArbitrary, 176
SetNameArbitrary, NOTTI, 187
SetOff, MagicLight, 180
SetOn, MagicLight, 180
SetPanel, 176
SetPixel, 176
SetPosition

Graphics, 146
SetRow, 176
SetSize

Graphics, 146
SGN (BASIC), 98
shift left (≪) key, 46
shift right (≫) key, 46
SIN (BASIC), 97
Sin key, 28
Size

File, 128, 130
Slope, 52
Smart quotes, 104

and strings, 88

specializations, Bluetooth, 169
SQR (BASIC), 97
Standard Deviation, 50
statement, 101
statement terminator (not in

BASIC), 86
Statistical calculator, 48
Statistics

Entering data, 49
StdErr Line, 52
StdErr Slope, 52
STOP, 123
Store (M) key, 23
String constants, 88
String Extension, 150
Student’s t-test, 53
Subtract

DateTime, 126
Sum, 50
SWAB (swap bytes) key, 45
SyncTime, 176
SyncTime, NOTTI, 187
t statistic, 53
TAN (BASIC), 97
Tan key, 28
Texas Instruments, 189, 192
Texas Instruments, beLight

CC2540T, 174
Time

DateTime, 126
TimeHHmm

DateTime, 126
trigonometry, 28
T-Tests, 53
Tukey boxplots, 48
Unicode minus signs, 88
Unicode table (BASIC), 104
Unicode table (Calculator), 61
Update

Graphics, 148

Guide to Using Best Calculator Page | 338

VAL, 100
Variables, 88

ending in $ (dollar sign), 89
Visually Perfect Algebraic

Method, 22
Welch’s t-test, 53
Witti Design, 175, 186

word (◫) key, 45
WriteCallbackDescriptor,

Bluetooth, 166
WriteClientCharacteristicConfig

urationDescriptorAsync, 166
WriteLine

File, 130
WritePicker

File, 130

WriteText
File, 130

x ̄(mean), 50
x² (Square) key, 25
x3 key, 31
Xor (^) key, 44
xy key, 32
XY Scatterplots, 55
y√x key, 32
Year

DateTime, 126
π key, 38
𝙨 (sample standard deviation),

50
𝚺 (sum), 50
𝝈n (population standard

deviation), 50

